13th Asia-Oceanic Meteorological Satellite Users' Conference (S6: Space Weather @ 11:30 on 2023-Nov-09)

Solar Activity and Space Weather KASI's Ongoing Studies to Understand and Predict Solar Flares

Sung-Hong Park and Young-Sil Kwak

Korea Astronomy and Space Science Institute (KASI)

Contents

1. Introduction

- Solar activities and their impacts on space weather
- Ionospheric responses to solar flare irradiance
- 2. Daily forecasts of flaring activity of the Sun
- 3. Deep learning model for solar flare irradiance translation
- 4. Summary and discussion

1. Introduction: solar activities and their impacts on space weather

Credit: L. J. Lanzerotti

1. Introduction: solar flares

1. Introduction: X-ray and EUV emissions from a flare

1. Introduction: EUV spectrum during a flare (Milligan+2012)

SDO/EVE - MEGS-A Spectrum

1. Introduction: ionospheric response to solar flare irradiance

Number density (cm^{-3})

2. Daily forecasts of flaring activity of the Sun

- Fully automated and operational
 - : Issued daily at 00:00 UT if either NASA's Solar Dynamics Observatory (SDO) near-realtime (NRT) data or NOAA's Solar Region Summary (SRS) is available
- Three forecast windows: 0–24 hr, 24–48 hr and 48–72 hr from the issuance time
- Event definitions: NOAA/GOES C-, M-, and X-class
- Methods: Poisson statistics with
 - 1) dH/dt: transport rate of magnetic helicity via the photospheric surface of active regions
 - 2) McIntosh sunspot classification

2. Daily forecasts of flaring activity of the Sun

• **Common challenge**: flares near or partially occulted by the solar limb (Park+2020)

Flare Forecasting Model Evaluation Workshop in 2017

 During the testing interval of 2016 to 2017, there were four M1.0+ event-days (of 26 event-days, or 15%) for which all flare forecasting models failed to provide a "yes" forecast with the probability threshold of 0.5.

 Table 6. Summary for Limb Flares on Four Event-days

Flare			Source Region	
#	Start Time	Peak Flux	NOAA Number	Location
1	2016-01-01 23:10 UT	M2.3	12473	S25 W82
2	2016-08-07 14:37 UT	M1.3	$\operatorname{None}^\dagger$	$S12 W70^{\$}$
3	2017-07-03 15:37 UT	M1.3	$\operatorname{None}^\dagger$	N02 W85
4	2017-10-20 23:10 UT	M1.1	12685	$\rm S12~E88^{\$}$

2. Daily forecasts of flaring activity of the Sun

1000

500

-1000

- Under way to update the forecasting methods with differential emission measure (DEM; n_e² along the line-of-sight for a given temperature range) from solar full-disk EUV NRT images obtained by the Atmospheric Imaging Assembly (AIA) onboard SDO.
 - : DEM maps derived from AIA NRT data using the regularized inversion by Hannah & Kontar (2012, 2013)
 - : For example, M1.2 flare in AR13413 (with an S1 proton flux) → start 02:54 UT / peak 04:47 UT
 - : Enhancement of DEM (particularly, T \gtrsim 10 MK) right before and around the GOES flare start time
 - : Reasonable calculation time (typically, a few min) of DEM for all AR pixels of a solar full-disk image
 - : Under investigation with various flare events

Differential Emission Measure (DEM) at $T_{OBS} = 2023-09-01$ 02:45 TAI

3. Deep learning model for solar flare irradiance translation: motivation

- Crucial to have EUV spectral irradiance measurements of solar flares
 - Solar plasma diagnostics \rightarrow understanding of energy release, coronal heating, ...
 - Modeling the ionospheric response to flares \rightarrow space weather applications (forecast)
- Limited with a small number of solar EUV spectrometers operated in space so far (e.g., SDO/EVE since 2010): mission lifetime, wavelength range, ...
- NOAA's GOES/X-ray Sensor (XRS) measurements of soft X-ray irradiance since 1975
 - Two channels: 0.05–0.4 nm (short), 0.1–0.8 nm (long)
 - Cadence: 2 or 3 sec

3. DL model for solar flare irradiance translation: goal

- Developing a deep learning (DL) model that can generate irradiance in EUV channels from GOES soft X-ray irradiance measurements of a given flare
 - : **Solar flare irradiance translator** (SFIT, soft X-ray \rightarrow EUV)
- Applications of the developed model
 - A statistical studies of solar flares: EUV properties, plasma temperatures/densities
 - A case study of an ionospheric response to EUV irradiance during a flare event (e.g., comparing ionosphere models with/without flare EUV input)

3. DL model for solar flare irradiance translation: dataset

Event definition

 A total of 1,993 flare events larger than the GOES C2.0 peak flux from the SDO/EVE flare catalog (2010 – 2014)

Input data

- GOES/XRS (0.1–0.8 nm channel) 1-min average irradiance time series over 6 hours (±3 hours from the GOES flare peak)
- Output data
 - SDO/EVE/MEGS 1-min average irradiance time series for three flare emission lines (9.4, 13.3, 30.4 nm) among a total of 30
- Preprocessing
 - interpolation for data gaps as well as suspicious points (outliers)

3. DL model for solar flare irradiance translation: model

• Fully Connected Layer (FLC) is a sort of Multi-layer Perceptron (MLP) characterized by densely interconnected neurons, where each neuron in the previous layer is connected to every neuron in the next layer.

3. DL model for solar flare irradiance translation: results I. 13.3 nm

3. DL model for solar flare irradiance translation: results II. 9.4 nm

3. DL model for solar flare irradiance translation: results III. 30.4 nm

Summary and discussion

- Various studies are being carried out at KASI to better understand and predict solar flares, mainly using:
 - 1) large datasets obtained with persistent observations from space such as NASA's SDO and NOAA's GOES
 - 2) recent techniques of data science (such as deep learning)
- One of the key elements for the flare study would be to construct a comprehensive (but fundamental only), consistent and easy-to-use science database from observations and simulations.
- In this context, an international-community-wide effort is required to efficiently design the database and future space (e.g., off-Sun-Earth line) missions such as an L4 mission under the feasibility study by KASI.