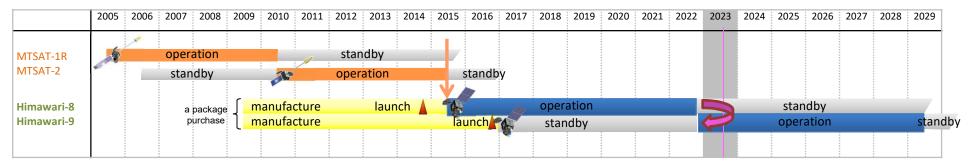


13th Asia-Oceania Meteorological Satellite Users' Conference

Status of Himawari-8/9 and their follow-on satellite program


Presented to Session 1-1 : The Space Program and Data Access updates Kotaro BESSHO Japan Meteorological Agency

Himawari-8/9

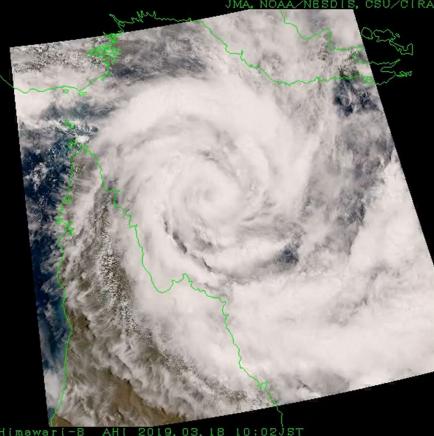
Advanced Himawari Imager (AHI) Communication antennas

Himawari-8 began operation on 7 July 2015, switching over to Himawari-9 on <u>13 December 2022</u>

Geostationary position	Around 140.7° E			
Attitude control	3-axis stabilization			
Communication	1) Raw observation data transmission Ka-band, 18.1 - 18.4 GHz (downlink)			
	2) DCS (Data collection System) International channel 402.0 - 402.1 MHz (uplink) Domestic channel 402.1 - 402.4 MHz (uplink) Transmission to ground segments Ka-band, 18.1 - 18.4 GHz (downlink)			
	3) Telemetry and command Ku-band, 12.2 - 12.75 GHz (downlink) 13.75 - 14.5 GHz (uplink)			

Switch over from Himawari-8 to Himawari-9

- JMA conducted the operational satellite switchover from Himawari-8 to -9 on **13 December 2022**.
- The switch was almost seamless with no data discontinuity. There were no changes to data format or data dissemination system between Himawari-8 and Himawari-9.
- Filename for Himawari Standard Data (HSD) and NetCDF via HimawariCloud changed as :


HS_H08_yyyymmdd_hhnn_Bbb_cccc_Rjj_Skkll.DAT.bz2 *for H-08 HSD* HS_H09_yyyymmdd_hhnn_Bbb_cccc_Rjj_Skkll.DAT.bz2 *for H-09 HSD The same applies to NetCDF files*

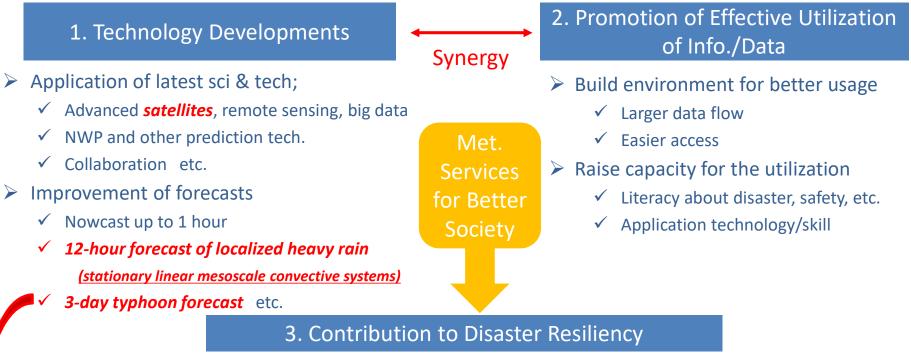
 JMA provided parallel distribution of Himawari-9 observation data and products for several months by an additional method before the switchover (27 Sep. – 13 Dec. 2022).

HimawariRequest

- HimawariRequest was started from January 2018 in cooperation with Bureau of Meteorology (BoM), Australia.
- International service for NMHSs in Himawari-8/9 coverage area to request Target Area observation(1,000 x 1,000 km area every 2.5 minutes).
- JMA expects this service to support disaster risk reduction activities in the Asia Oceania region.
- Status as of 29 October 2023
 - Registration: 22 NMHSs
 - 187 requests for TC, volcanic eruption, wildfires, etc.

HimawariRequest from BoM on 13-19 Mar. 2019

Himawari Follow-on Program

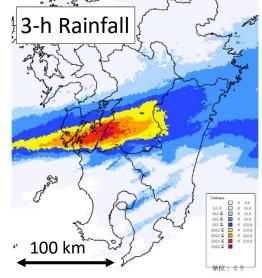

- JFY2018: JMA has started to consider the next GEO satellite (Himawari-10) program.
 - "By JFY2023 Japan will start manufacturing the Geostationary Meteorological Satellite that will be the successor to Himawari-8/9, aiming to put it into operation in around JFY2029"
 - Japan's "Basic Plan on Space Policy" (June 2020)
 - JMA will pursue seamless GEO satellite system by considering CGMS baseline and WMO Vision for WIGOS in 2040 to contribute the establishment of Geo-Ring observation.
- JFY2019: Worldwide Technology Trends Survey on Future Satellites/Instruments
- JFY2020: OSSE of hyperspectral IR sounder on JMA NWP systems was implemented.
- JFY2021: Internal, domestic and international user requirements had been summarized.
- JFY2022: RFI, RFP and Start of manufacturing of H-10 using supplemental budget
- JFY2028: Launch of Himawari-10
- JFY2029: Start of operation of Himawari-10

JFY (Apr – Mar(Next))	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Himawari-8 Himawari-9	N	lanı	ufact	urin		auno	aun	ch A	0		<mark>tion</mark> orbi		ndb	У				stan tion	idby al		
follow-on		1. 有 医骨骨骨 化化合物 化合物 化合物 化合物				日本市委委会 有利 小肉 普卡林 计目录系统			5 4 4 4 4 4 4 5 4 5 4 5 5 5 5 5 5 5 5 5	20 20 20 20 20 20 20 20			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		Ma	nufa	actu	ring	Lo	auno	h

WMO Vision for WIGOS in 2040 for GEO

	Application	Satellite/Instrument
VIS/IR Imager w/ rapid repeat cycles	Cloud amount/type/top height/temperature, wind, sea/land surface temperature, precipitation, aerosols, snow cover, vegetation cover, albedo, atmospheric stability, fires, volcanic ash, sand/dust storm, convective initiation	 NOAA: GOES-16,17/ABI JMA: Himawari-8,9/AHI KMA: GK-2A/AMI CMA: FY-4A,4B/AGRI EUMETSAT: MTG-I1/FCI (2022)
Hyperspectral IR Sounder	Atmospheric temperature/humidity, wind, rapidly evolving mesoscale features, sea/land surface temperature, cloud amount/top height/temperature, atmospheric composition	 NOAA: N/A JMA: N/A KMA: N/A CMA: FY-4A,4B/GIIRS EUMETSAT: MTG-S1/IRS (2024)
Lightning Mapper	Lightning, location of intense convection, life cycle of convective systems	 NOAA: GOES-16,17/GLM JMA: N/A KMA: N/A CMA: FY-4A/LMI EUMETSAT: MTG-I1/LI (2022)
UV/VNIR Sounder	Ozone, trace gases, aerosol, humidity, cloud top height	 NASA: TEMPO (2022) JMA: N/A KMA: GK-2B/GEMS CMA: N/A EUMETSAT: MTG-S1/UVN (2024)

JMA's 10-Year Strategy Toward 2030



- > JMA to Contribute to "Disaster Awareness Society" and to play the leading role in met. services
 - \checkmark Improved impact-based warnings on the basis of advanced sci & tech
 - ✓ Collaborate with stake-holders to build local decision making capacity
 - ✓ Raise individual disaster awareness and response capacity

We need to observe 3-D humidity information to improve these forecasts

Toward Better Prediction for Stationary Linear Mesoscale Convective Systems

- High-impact weather events in recent years have resulted in a demand for improving JMA's weather forecasts/warnings
- Torrential rain events during East Asian rainy season in 2020 and
 2021 further enhanced this demand
 - ✓ Mainly caused by stationary linear mesoscale convective systems
- JMA established WG with external experts and internal TF to improve the prediction system to issue warnings with extended lead time by
 - Introducing advanced observation technologies such as GNSS receivers on vessels (short-term subject) and geostationary IR sounders (long-term subject)
 - Improving NWP models
- Enhanced collaboration with academia.

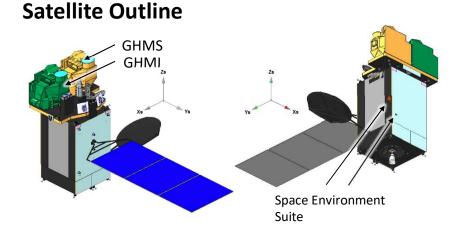
3-h accumulated radar/rain-gauge obs. (mm) at 0500 on 4^{th} July 2020

Houses submerged by the Kuma River on 4 July 2020 (<u>MLIT</u>)

Himawari-10 Overview

Missions

- Geostationary HiMawari Imager (GHMI) Measures visible & infrared radiance for weather monitoring/nowcasting & other applications.
- Geostationary HiMawari Sounder (GHMS) Measures high-spectral-resolution infrared radiance to collect vertical information of atmospheric temperature & water vapor, which improve weather forecasting by assimilating to numerical weather prediction models.
- Data Collection System


Relays surface-based Data Collection Platforms (DCPs) data.

• Space Environment Suite

Measures proton & electron flux in geostationary Si orbit, as a government furnished equipment by NICT.

Location

• Geostationary orbit at around 140.7 deg. E

	Satellite Design
Spacecraft	MELCO standard DS2000 bus
Mass (approx.)	2.4 t (dry), 6.1 t (with propellant)
Size (approx.)	4 m x 3 m x 6 m (folded), 11 m (deployed)
Design life	≥ 15 years (mission period ≥ 10 years)
Communications	Ka-band: Mission data downlink Ku-band: TT/C uplink & downlink UHF-band: DCP uplink

Geostationary HiMawari Imager (GHMI)

- L3Harris's new 18-band imager based on the same concept with its GeoXO Imager (GXI) selected by NASA
- Observing sequence & band configuration changed for Himawari-10
- Values in the tables show JMA requirements

Improvement from Himawari-8/9

GHMI Observing Area & Interval

GHMI Spectral band characteristics

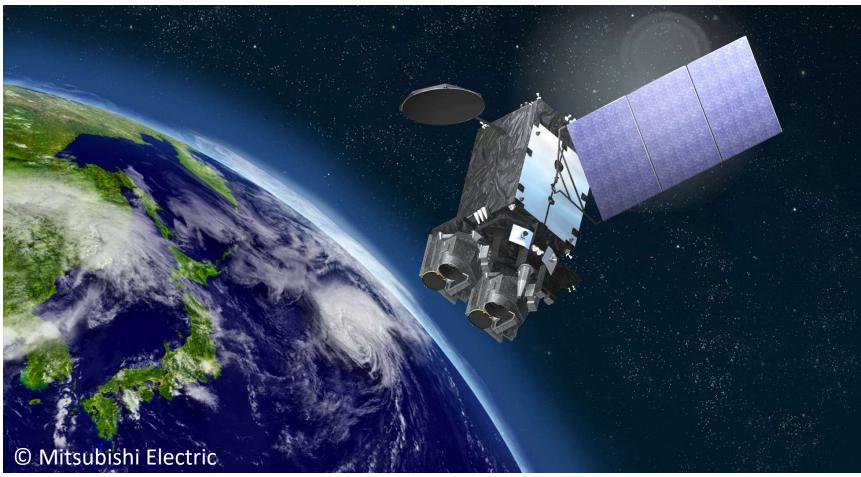
	Center Wavelength [µm]	Band width [µm]	Spatial resolution at nadir [km]
	0.46 - 0.48	≤ 0.07	≤1
VIS	0.54 - 0.56	≤ 0.05	≤ 1
	0.63 - 0.65	≤ 0.12	≤ 0.5
	0.85 - 0.87	≤ 0.06	≤1
	1.375 - 1.385	≤ 0.04	<u> </u>
NIR	1.60 - 1.62	≤ 0.08	≤ 2
	2.24 - 2.27	≤ 0.06	<u> </u>
	3.75 - 3.95	<u>≤ 0.50</u>	<u></u>
	5.10 - 5.20	≤ 0.20	≤1
	6.05 - 6.45	≤ 1.20	≤ 2
	6.90 - 7.00	≤ 0.50	≤ 2
	7.27 - 7.43	≤ 0.60	≤ 2
IR	8.44 - 8.76	≤ 0.50	≤ 2
	9.55 - 9.70	≤ 0.50	≤ 2
	10.3 - 10.5	≤ 0.90	≤ 2
	11.1 - 11.3	≤ 1.00	≤ 2
	12.25 - 12.55	≤ 1.20	≤ 2
	13.2 - 13.4	≤ 0.70	≤ 2

Geostationary HiMawari Sounder (GHMS)

- L3Harris's new infrared FTS sounder based on the same concept with its GeoXO Sounder (GXS) being proposed to NASA
- Observing sequence changed for Himawari-10
- Values in the tables show JMA requirements

Observing Area (minimum coverage)	Interval
Sounding Disk (LZA ≤ 60 deg)	60 min
Japan (EW 2500 km x NS 2000 km)	15 min [%]
Target Area (EW 1000 km x NS 1000 km)	15 min

GHMS Observing Area & Interval


※ Sounding Disk observation over Japan area is regarded as one of the "Japan" observations in the 60-min repeat cycle (i.e., three "Japan" observations to be conducted in 60 minutes).

Spatial (horizontal) resolution $\leq 4.2 \text{ km}$ Spectral $680 - 1095 \text{ cm}^{-1}$ Coverage $(14.7 - 9.13 \mu m)$ MWIR $1689 - 2250 \text{ cm}^{-1}$ Spectral Resolution (FWHM) $\leq 0.754 \text{ cm}^{-1}$ Spectral Sampling Distance $\leq 0.625 \text{ cm}^{-1}$

GHMS Spatial & Spectral characteristics

Thank you!!

Himawari-10 Perspective image

