

The 13th Asia-Oceania Meteorological Satellite Users' Conference

TRAINING EVENT 3 - 5 November 2023 AOMSUC-13

3 - 5 November 2023 National Meteorological Satellite Center

AOMSUC-13 Training Event Session T 15

"Early Warning of Hazardous Weather based on Satellite Data"

Mr Bodo Zeschke Teacher, Australian Bureau of Meteorology Training Centre Point of Contact, Australian VLab Centre of Excellence

UNOFFICIAL

UNOFFICIAL

Topics to be presented

- The motivation for this presentation
- The Hazardous Weather examined here
- Application of satellite data in anticipating Hazardous Weather.
- What resources are available.
- What techniques are available.

UNOFFICIAL

The motivation for this presentation

- 1. Utilise resources pertaining to the detection of Hazardous Weather on the Australian VLab CoE Regional Focus Group archive.
- 2. Present feedback provided by colleagues from Japan (JMA), South Korea (KMA), the USA, BMKG Indonesia, Samoa and Singapore.
- 3. Investigate the timelines of delivery of satellite data when monitoring Hazardous Weather.
- 4. Attendees can access some of the available resources.
- 5. Attendees can try some useful techniques for monitoring Hazardous Weather.
- 6. Obtain feedback from attendees regarding their ability to utilise satellite data for early warning of Hazardous Weather.

UNOFFICIAL

Using the Socrative cloud-based learner response system to enhance interaction

What Hazardous Weather is examined here?

Tropical Cyclones / Typhoons / Hurricanes

Please answer Socrative Question 1

UNOFFICIAL

Application of satellite data in anticipating Hazardous Weather.

- Satellite data latency, compared to latency of other observational data including RADAR, lightning data etc.
- Rapid scan data, for long lived hazardous weather events:
 - Giving reduced latency of receipt of data.
 - Better in capturing rapid changes in Hazardous Weather.
- Satellite data and data products that can predict the development of Severe Weather and verification of this.

Himawari-9 scanning

Data is scanned from west to east, starting at the north pole.

10 segments compose a full disk scan of 10-minute duration.

The date / time stamp of the images refers to the start of the scan

Full disk Interval: **10 minutes** (6 times per hour)

Image from "Status of Current and Future Satellite Programs of Japan Meteorological Agency" K. Bessho

Evaluating the delay in the receipt of real-time 10minute Himawari-9 data at the Bureau (18th August 2023)

UTC timestamp on 10 minute image	Local time receipt of image into "Panther" visualisation software (UTC +10)	time delay (minutes) for True Colour RGB image
0620	1637 LST	<mark>17</mark>
0630	1646 LST	<mark>16</mark>
0640	1957 LST	<mark>17</mark>

UTC timestamp on 10 minute image	Local time receipt of image into "Panther" visualisation software (UTC +10)	time delay (minutes) for IR (Band 13) image
0620	1635 LST	<mark>15</mark>
0630	1644 LST	<mark>14</mark>
0640	1654 LST	<mark>14</mark>

Evaluating the delay in the receipt of real-time 10minute Himawari-9 data at the Bureau (18th August 2023)

Overpass time over Australia (UTC)	Local time receipt of image into "Panther" visualisation software (UTC +10)	time delay (minutes) for True Colour RGB image
0626-0629	1637 LST	<mark>8-11</mark>
0636-0639	1646 LST	<mark>7-10</mark>
0646-0649	1957 LST	<mark>8-11</mark>

Overpass time over Australia (UTC)	Local time receipt of image into "Panther" visualisation software (UTC +10)	time delay (minutes) for IR (Band 13) image
0626-0629	1635 LST	<mark>6-9</mark>
0636-0639	1644 LST	<mark>5-8</mark>
0646-0649	1654 LST	<mark>5-8</mark>

Darwin 6-7 minute 7-8 minute	Overpass time over Australia (UTC)	Local time receipt of image into "Panther" visualisation software (UTC +10)	time delay (minutes) for True Colour RGB image				
8-9 minute	0626-0629	1637 LST	<mark>8-11</mark>				
Eveluating the delay in the	0636-0639	1646 LST	<mark>7-10</mark>				
Evaluating the delay in the	0646-0649	1957 LST	<mark>8-11</mark>				
Please answer Socrative Question 2							
minute Himawari-9 data at the Bureau (18 th August 2023)	Overpass time over Australia (UTC)	Local time receipt of image into "Panther" visualisation software (UTC +10)	time delay (minutes) for IR (Band 13) image				
minute Himawari-9 data at the Bureau (18 th August 2023)	Overpass time over Australia (UTC)	Local time receipt of image into "Panther" visualisation software (UTC +10)	time delay (minutes) for IR (Band 13) image				
minute Himawari-9 data at the Bureau (18 th August 2023)	Overpass time over Australia (UTC) 0626-0629	Local time receipt of image into "Panther" visualisation software (UTC +10) 1635 LST	time delay (minutes) for IR (Band 13) image				
minute Himawari-9 data at the Bureau (18 th August 2023)	Overpass time over Australia (UTC) 0626-0629 0636-0639	Local time receipt of image into "Panther" visualisation software (UTC +10) 1635 LST 1644 LST	time delay (minutes) for IR (Band 13) image 6-9 5-8				

Refreshing of the RADAR loop on the Bureau of Meteorology external web site (Melbourne RADAR)

Bureau Home > Radar Images > 128 km Melbourne Radar Loop

128 km Melbourne Radar Loop

View the current warnings for Victo	ria				UTC	Local time	time
Loops	Single images	Radar S	ite Information	Other			
Radar	<u>64 km</u>	128 km	<u>256 km</u>	512 km com	timestamp	receipt of image	delay
Rainfall	5 min	<u>1 hour</u>	Since 9 am	<u>24 hou</u>			
Dunolly	Graytowr	l ake Nillabcoot	Nearby	radars	on the	onto (UTC +10)	(minutes)
Natte Yallock	Heathcote Mangalore	Avenel					for ID
Maryborough	emaine	eymour Mans	field		NADAN		
Avoca Kyne	tonBroadford	Nexandra Fi	Radar o	controls	image		image
Clunes Daylesford	Lancefield	Flowerdale Jan	nieson 47-24 P	rame: 7	intuge		indge
Beaufort Blackwood	lacedon wallan	Buxton	17:34	51 18/8/2023			
Ballarat Ballan	Gisborne Yan Yean Sunbury	Marysvil	le 🗧 🗧				
Lai Lai	Melton Viewbank	Lilydale Warburto		- + •	073/	1736 I ST	2
Mt Mercen Meredith	Brunswick Melbour	ne Mt Dandenong	Pointer	uata	0754	1750151	۷.
Lismore 100 km Sheoaks 50 km	Werribee Springvale	Rowville orabbin Ap	Noojee	6 km East	0720	1741 LCT	2
Cressy	Avaion Ap Carrum	Pakenham Cranbourne	Varragul	2 km North	0/39	1741 LST	2
Geelong	G G Morni	ington Koo Wee Rup	12	2 km Away			
Colac Boonah Angle	sea Rosebud	S A Karry	Map Coo	ordinates	0744	1746 LST	2
Gellibrand Aireys In	let L	Covies Loongatha	36	deg 46 min S			
Mt Cowley	- a-	Wopthaggi	144	deg 49 min E rees & Minutes	0749	1754 ST	5
Viveeaproinan		🧭 🛷 🔧	C C Dec	imal Degrees	0745	1734151	
Cape Otway	이 영국 독재 이	Cape Liptrap	Origin	n Faat		1750167	Л
Melbourne Rain Rate	18/08/23 07:34	UTC 0.5° 128km	1 0 km	North Rst.	0/54	1/20 L21	4
	nt Moderati	e Heavy	Pointer	data is relative to			_
LIGI	in moderati	e neavy	Origin. C radar im	lick anywhere on age, to set a new	0759	1803 LST	4
			origin.				

Note: Timestamp on the RADAR image corresponds to the end of the observation period / the scan. (Leon Majewski, 23rd August 2023). Each scan takes 5 minutes.

image courtesy Bureau of Meteorology

HimawariRequest

- HimawariRequest was started from January 2018 in cooperation with Bureau of Meteorology (BoM), Australia.
- International service for NMHSs in Himawari-8/9 coverage area to request Target Area observation(1,000 x 1,000 km area every 2.5 minutes).
- JMA expects this service to support disaster risk reduction activities in the Asia Oceania region.
- Status as of 08 September 2023
 - Registration: 22 NMHSs
 - 185 requests for TC, volcanic eruption, wildfires, etc.

HimawariRequest from BoM on 13-19 Mar. 2019

slide kindly forwarded to me by Mr Hiroshi Suzue, Japan Meteorological Agency

Request driven GEO-KOMPSAT-2A rapid scan (2-minute) data

(slide from Dr Sung-Rae Chung's presentation at the joint Korea Australia VLab CoE's Regional Focus Group meeting of 29th October 2019)

Observation Area and Schedule

1 FD + 5 ELA + 5 LA : 10 min

- Full Disk (FD)
- Extended Local Area (ELA) : 3800 X 2400 km (EW X NS)
- 🕞 Local Area (LA) 1000 X 1000 km

- The official request of target area observations by global users over the Asian Pacific region (RA II and RA V) will be available
 - Global users submit official request form defining specific measurement area via designated web page (or email)
 - Decision will be made before disseminating images via designated web page

Request driven GEO-KOMPSAT-2A rapid scan (2-minute) data

(slide from Dr Sung-Rae Chung's presentation at the joint Korea Australia VLab CoE's Regional Focus Group meeting of 29th October 2019)

Please answer Socrative Question 3

1 FD + 5 ELA + 5 LA : 10 min

- 🕞 Full Disk (FD)
- Extended Local Area (ELA) : 3800 X 2400 km (EW X NS)

🖕 Local Area (LA) 1000 X 1000 km

- The official request of target area observations by global users over the Asian Pacific region (RA II and RA V) will be available
 - Global users submit official request form defining specific measurement area via designated web page (or email)
 - Decision will be made before disseminating images via designated web page

Request-based high frequency regional observations

(https://www.jma.go.jp/jma/jma-

eng/satellite/ra2wigosproject/ra2wigosproject-intro_en_jma.html

	Request-based high frequency regional observation			
	Emergency Support Mechanism of FENGYUN Satellite (FY ESM) [CMA]			
FY ESM (CMA)	China Meteorological Administration (CMA) introduced the Emergency Support Mechanism of FENGYUN (FY) Satellite (FY ESM) in 2018, open to international users who made a request once visited by such extreme events as typhoon, heavy rain, severe convection, forest or grassland fire and sand and dust storm. In this case, the on- duty FY satellite is activated to initiate highly frequent observation of a given area at an interval of up to 5 minutes, processing and generating images and quantitative products, which are provided through such channels as CMACast, Internet and direct satellite broadcasting, to inform the processes of disaster preparedness, mitigation and relief in a timely fashion.			
	URL: https://fy4.nsmc.org.cn/service/en/emergency/index.html			
HimawariRequest	HimawariRequest [JMA]			
(JMA)	The HimawariRequest service enables registered NMHS users to request particular Target Area observations in order to leverage this flexibility on an international scale. The service stems from a WMO RA II (Asia) regional project to develop support for NMHSs in satellite data, products and training in collaboration with WMO RA V (South-West Pacific) Members.			
	JMA expects the HimawariRequest service to support disaster risk reduction activities in the region based on the monitoring of extreme events such as tropical cyclones and volcanic eruptions.			
	URL: https://www.jma.go.jp/jma/jma-eng/satellite/HimawariRequest.html			
Geo-Komnstat-2A	Geo-Kompsat-2A AMI Rapid Scan (ARS) Service[KMA]			
AMI ARS Service (KMA)	The Advanced Meteorological Imager (AMI) on board Geo-Kompsat-2A (GK2A) is capable of frequent and flexible observation, providing full disk images of the Earth every 10 minutes and regional images at shorter intervals. Ful disk and other regional observations have spatial resolutions of 0.5 to 2 km and spectral coverage incorporating 16 channels.			
	The GK2A AMI Rapid-Scan (ARS) service allows National Meteorological and Hydrological Services (NMHSs) to request particular Target Area observations by leveraging the location flexibility on an international scale.			

URL: http://datasvc.nmsc.kma.go.kr/datasvc/html/special/specialReqMain.do#

Request-based high frequency regional observations

image forwarded by Yamada Kazutaka Japan Meteorological Agency

Observation Area Map FY ESM Y) Japan Meteorological Agency vents (CMA) ie on-🗾 ЈМА 🔽 KMA CMA HimawariRequest (JMA) is in al the Geo-Kompsat-2A lexible **AMI ARS Service** Is. Full (KMA) 1000 km Leafed Japan Meteorological Agency

URL: http://datasvc.nmsc.kma.go.kr/datasvc/html/special/specialReqMain.do#

UNOFFICIAL

Resources for the detection of developing convection

- JMA's Rapidly Developing Cumulus Area (RDCA) product
 - Use by BMKG Indonesia.
- KMA's Convection Initiation (CI) product.
- LightningCast Probabilities from the USA
 - Example from the VLab Regional Focus Group meeting
- Simple RGB composite image analyses

UNOFFICIAL

JMA use of the RDCA product for the monitoring and warning of convective cloud development

(content as presented by K.Bessho at the EUMETSAT Meteorological Satellite Conference 2023)

Convective Cloud Information (CCI)

CB, RDCA and MLUA

From 0900 UTC on 23 October 2022 To 0900 UTC on 24 October 2022

https://www.data.ima.go.jp/mscweb/technotes/msctechrep62-2.pdf

- Utilized bands of Himawari-8/9 AHI:
 - B03, B08, B10, B11, B13, B15, B16 for **RDCAs**
 - B03, B13, B15 for CBs & MLUAs
- Horizontal resolution:
 - 0.1° for RDCAs
 - 0.04° for CBs & MLUAs
- Temporal resolution: 10 min.

Verification of JMA's RDCA product

(content as presented by K.Bessho at the EUMETSAT Meteorological Satellite Conference 2023)

Lightning Observation (WWLLN)

Convective Cloud Information

RDCAs and CBs were detected in areas where lightning was observed in the tropics (red circle) and mid-latitudes (orange circle).

Verification of JMA's RDCA product

(content as presented by K.Bessho at the EUMETSAT Meteorological Satellite Conference 2023)

Number of RDCA detections before and after lightning in 2021

Animation: Checking the performance of the RDCA algorithm as applied to Kalimantan. 21st October 2023

image courtesy JMA / BMKG Indonesia

animation courtesy JMA / Bureau of Meteorology. Lightning data courtesy Weatherzone

0440UTC H-9 Band 13 image. Red crosses show cumulus clouds that have the potential to become cumulonimbus clouds in the next hour (by 0540UTC).

Himawari-9 (H-9) Band 13 loop from 0440UTC to 0540UTC, including Weatherzone 10 minute lightning data.

KMA's Convective Initiation product for the monitoring and warning of convective cloud development

(slide from Dr Sung-Rae Chung's presentation at the joint Korea Australia VLab CoE's Regional Focus Group meeting of 29th October 2019)

Convective Initiation (CI)

6 July 2019

- Convective clouds occurred between 06:00 UTC and 09:00 UTC
- Atmospheric instability due to the inflow and convergence of easterly winds in the lower atmosphere
- NWP model did not predict convective cloud.

Convective Initiation product as applied to developing storms over Korea; case study of 6th July 2019

(slide from Dr Sung-Rae Chung's presentation at the joint Korea Australia VLab CoE's Regional Focus Group meeting of 29th October 2019)

Convective Initiation (CI)

6 July 2019

CI signal is picked up 1 hour 50 minutes before RADAR. 3 hours before the lightning.

CI Forecast (06:00 UTC) → Radar ≥ 35 dBZ (07:50 UTC) → Lightning (09:10 UTC)

image courtesy SSEC University of Wisconsin-Madison

LightningCast GOES-West American Samoa

Legend:	 LightningCast	GOES-Hest	American	Sanoa
_	10%			
	25%			
	50%			
	75%			

Description:An AI model that predicts the probability of lightning in the next 60 minutes using GOES-R ABI data.

LightningCast Verification over Samoa, 7th June 2023

(from the Australian VLab CoE Regional Focus Group meeting of 29th August 2023)

Verification of Lightning forecast

GOES-18 WV and GLM lightning data, 1655UTC

image courtesy Weathernerds.org

image courtesy SSEC University of Wisconsin-Madison

LightningCast GOES-West American Samoa

Leaend:	LightningCast	GOES-Hest	American	Sanoa
2	10%			
	25%			
	50%			
	75%			

Description:An AI model that predicts the probability of lightning in the next 60 minutes using GOES-R ABI data.

Animation:

LightningCast Verification over Samoa, 7th June 2023

(from the Australian VLab CoE Regional Focus Group meeting of 29th August 2023)

Verification of Lightning forecast

Animation: GOES-18 WV and GLM lightning data, 1705-1805UTC

animation courtesy NOAA / Weathernerds.org

Lightning forecast not verified

Exploring the LightningCast output over Samoa

Link 2 kindly provided by Scott Lindstrom SSEC

https://cimss.ssec.wisc.edu/severe_conv/pltg.html

The Bureau of Meteorology

2: Choose American Samoa or Guam

Exploring the LightningCast output over Samoa link kindly provided by Scott Lindstrom SSEC https://cimss.ssec.wisc.edu/severe_conv/pltg.html

The Bureau of Meteorology

Simple RGB composite image analyses

(slide from Scott Lindstrom's Australian VLab CoE Regional Focus Group meeting of 15th December 2022. Location is American Samoa)

Animation: Australian example from the 16th October 2023.

+

Cloud Phase RGB (SA tuning) Valid Mon, 16 Oct 2023 02:50 UTC

Cloud Phase RGB, 0250UTC to 0640UTC

Day Microphysics RGB, 0250UTC to 0640UTC

2023-10-16 02:50Z Ma

UNOFFICIAL

What simple techniques are available to assist in the prediction of and monitoring of Hazardous Weather?

 Varying the image animation speed and the activation of "persistence of vision"

 Rocking animation, such as can be generated by the CIRA SLIDER viewer.

UNOFFICIAL

Animation: Varying the speeds of animation

Low near Fiji, 17th October 2015 10 minute data

animations courtesy JMA/Bureau of Meteorology

Persistence of Vision

Above: slow animation, e.g. 2 FPS. Perception of an object fades with time.

► Time

Above: fast animation, e.g. 15 FPS. Perception of an object fades with time but is refreshed by a new image. This creates the illusion of continuity/motion

The Bureau of Meteorology

Let's try speeding up the animation in CIRA SLIDER try Link 3 https://rammb-slider.cira.colostate.edu/

Better estimation of the system centre

System moving into an area of increased shear

images courtesy CIMSS Tropical Cyclone Team

Upper level flow

Animation: Low near Fiji, 17th October 2015

Confluent flow monitored better – possible convergence and origin of storms on the SE flank of system

animation courtesy Bureau of Meteorology/JMA

images courtesy

CIMSS Tropical

Cyclone Team

Region of strong low-upper level atmospheric shear revealed

Viti Levu

Let's try CIRA SLIDER in "rock and roll" mode https://rammb-slider.cira.colostate.edu/ 2023-10-28 ~ 05:00:00 UTC 3: click on "Rock" C Play (space) < 2: increase speed (L)oc (R)ock Re(v) of animation Speed (†/↓) Zoom (+) Zo m (-) Max (Z)oom 0° Slid(e)r 1: Zoom (+) into (S)atellite Himawari-9 (14 ... -Se(c)tor Full Disk area of interest (P)roduct GeoColor (CIRA) -Add (O)verlay Add (O)verlay # of (I)mages 12 (T)ime Step 10 min х GeoColor (CIRA) Hide Info Add (M)ap Lat/Lo(n) Default Borders Hide White V (A)rchived Imagery (B)egin D... - Be - Begin Ti... -End Date... - En - End Tim... -Home (y) Share (U)RL Help (?) (Q)uery Lat/Lon (D)ownload \otimes 2023-10-28 05:00:00 UTC

Animation: Australian smoke event, 2nd March 2019

Bunyip fires 0300-0730UTC 2nd March 2019

2.5 minute, 10 frames per second (FPS) The Bureau of Meteorology HimawariRequest Rapid Scan data animation of the True Colour RGB in "rocking mode"

2.5 minute, 50 frames per second(FPS)

Animation: Australian smoke event, 2nd March 2019

Bunyip fires 0300-0730UTC 2nd March 2019

Vigorous "bubbling up" of smoke and pyrocumulus

Better rendering of rotation

0430UTC

2.5 minute imagery revealing short lived events in detail, e.g., episodes of fire "flare up" and injection of smoke to JTC and 06UTC higher levels mulus cloud and

Better monitoring of the mesoscale

0730UTC

Development of enhanced episc within the blue circle, the associ the injection of smoke above FL250 within the red and yellow circle.

The Bureau of Meteorology

Animation: Rapid animation in rocking mode

Sangeang Api ash emissions 10 FPS, rocking animation 0730 to 0920UTC 21st July 2019

Forecaster use of fast and normal satellite image animations during the shift (from Zeschke et al. 2019)

images courtesy JMA/Bureau of Meteorology

Forecaster use of fast and normal satellite image animations during the shift (from Zeschke et al. 2019)

Please answer Socrative Question 5

images courtesy JMA/Bureau of Meteorology

UNOFFICIAL

Summary

- Have given the motivation for this presentation.
- Have examined satellite data and data products for anticipating and monitoring hazardous weather related to Tropical Cyclones, Thunderstorms, Smoke and Volcanic Ash.
- Have investigated the time delay in receipt of satellite data and how to compensate for this.
- Have presented resources for anticipating convective development, with some verification.
- Have investigated techniques that take advantage of "persistence of vision".

UNOFFICIAL

UNOFFICIAL

Thank You ©

Bodo Zeschke

UNOFFICIAL