T13 15:10~16:40 (90') Training lecture from JMA

- We will use the following data in this lecture. Are they available on your PC? If not, please let us know!

```
1.GMSLPD2.T2302_MAWAR_20230525_263.sheveluch4.QuickGuide to SATAID.pdf
```

Practical Training on the Utilization of Himawari-9 Imagery Using SATAID

Shiho Naiki and Yurika Yamada Meteorological Satellite Center / Japan Meteorological Agency

04 November 2023

2014 Himawari-8

2016

____Himawari-9

Contents

- Overview of Himawari-9 and introduction to SATAID and RGB image
- Hands-on training on basic SATAID functions and displaying RGBs
 - Introduction of basic operations of SATAID
- >Break (10minutes)
 - Case1 : Typhoon MAWAR (T2302) approaching Pacific Islands
 - Case2 : Volcanic eruption of Sheveluch, Russia

Overview of Himawari-8, 9

★ Himawari-8, 9 Operation Plan

FY Satellite	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Himawari-8				La	auno	ch			O	pera	tior	nal			1	ln-o	rbit	sta	ndb	y	
		Mai	nufa	ctu	ring							a;									
Himawari-9						L	aun	ch	I	n-oi	bit	star	ıdby	6		O	pera	tion	nal		
																	-	·*			

★ Satellite conceptual diagram

★Satellite spec

Advanced Himawari Imager(AHI)	Total length	Approx. 8m
For communication Antenna	Weight	Approx. 3,500kg (including fuel) Approx. 1,300kg (only main unit)
	Initial generated power	Approx. 2.6kW
	Design lifetime	Over 15 years (main unit) Over 8 years (observation functions)
Solar Array Panel		

Overview of the Himawari-9 observation (10 minutes Repeat Cycle)

- AHI (Advanced Himawari Imager) on Himawari-9 has the ability of various scans during 10 minutes Full Disk observation.
- AHI can flexibly change the scan area of "Target Area" for observation of phenomena such as typhoons and active volcanoes.

AHI Spectral Bands

Himawari-8/9 Imager (AHI; Advanced Himawari Imager)						
Band		nd	Spatial Resolution	Central Wavelength	Physical Properties	
1			1 km	0.47 μm	vegetation, aerosol] 3
2		'isible 'VIS)	I KIII	0.51 µm	vegetation, aerosol	Visib
3		(10)	0.5 km	0.64 µm	Vegetation, low cloud, fog	Band
4		Near	1 km	0.86 µm	vegetation, aerosol]
5	In	frared	2 km	1.6 µm	cloud phase/particle size	
6	(NIR)	Z KIII	2.3 µm	cloud particle size	
7				3.9 µm	low cloud, fog, forest fire	-
8				6.2 µm	upper-level moisture]
9				6.9 µm	mid- and upper-level moisture	WV Bound
10)			7.3 µm	mid-level moisture	
11	In	frared	2 km	8.6 µm	cloud phase, SO_2	1 I
12	2	(IR)	Z KIII	9.6 µm	Ozone content	
13	3			10.4 µm	cloud imagery, information of cloud top	TIR
14	3			11.2 µm	cloud imagery, sea surface temperature	Band
15	5			12.4 µm	cloud imagery, sea surface temperature	
16	5			13.3 µm	cloud top height	J

Visible band (B03, 0.64 µm)

Near-Infrared band (B04, 0.86 µm)

Visible band (B03, 0.64 µm)

Near-Infrared band (B04, 0.86 µm)

B03

There is no significant difference in reflectance among vegetation, soil, and water surface.

B04

Reflectance of soil and vegetation is larger than that of water surface.

Weak

Strong

Infrared band (B13, 10.4 µm)

Differential imagery of B13 – B15

• Subtract the brightness temperatures of B15 from B13.

Too many bands!

- 16 bands' images contain a lot of information about
 - Cloud thickness, top temperature
 - Cloud particle size, cloud phase (ice/liquid)
 - Humidity
 - Volcanic ash
 - Vegetation
 - etc.

Solution -> RGB image

- Can illustrate multiple information on one image.
- Can be composed by simple process.
- "SATAID" can compose RGB image easily.

What's RGB?

- Red (R), green (G) and blue (B), which are the three primary colors of light, constitute color space expressing additive color composite
- RGB compositing is a technique to display a color using this property of the three primary colors of light

three primary colors RGB

Application to Satellite Imageries

RGB composite

Thick and high cloud (Cb) areas appear yellow!

"High" cloud

IR

8-31 02:53UTC

ice cloud

If you want to focus on the low level clouds, look at cyan area.

Well-known RGBs from Himawari-9

Day Natural Colors

Day Microphysics

Night Microphysics

True Color

Day Snow-FogDay Convective StormDustAirmass

https://www.data.jma.go.jp/mscweb/data/himawari/sat_img.php?area=fd_

RGB Quick Guides

https://www.jma.go.jp/jma/jma-eng/satellite/VLab/RGB_QG.html

What is SATAID?

SATAID (**SAT**ellite Animation and Interactive Diagnosis) is a sophisticated display software visualizing meteorological information in multiple dimensions (spatial and temporal), which assists forecasters to analyze and monitor continually weather parameters and phenomena for better meteorological services.

What can we do by using SATAID?

- With SATAID, you can ...
 - Display (and overlay) satellite imagery and NWP data

(and various observations i.e. SYNOP, SHIP, TEMP, Radar, Wind Profiler, ASCAT etc. if its format prepared)

– Use many functions

vertical cross-sectional chart, time-series chart, digital data output to CSV file.....

- Save as a file including a package of all data your drawings and comments, which will be useful for trainings and case study archives
- Analyze position and intensity of tropical cyclones

RGB composite imagery on SATAID

RGB Recipes Developed by JMA

Himawa-8 30/01/2017 14:52UTC

 RGB list file for SATAID includes some RGB recipes developed by JMA

How can we get SATAID?

۲

■ <u>WIS Website</u>

■ <u>Himawari-Cast</u>

https://www.wis-jma.go.jp/cms/sataid/

- Internet Environment is required
- 5 channels are available every 10 minutes
- ID and Password are required (wis-jma at met.kishou.go.jp)

https://www.data.jma.go.jp/mscweb/en/hima wari89/himawari_cast/himawari_cast.php

- Dedicated antenna and computers are required
 - 14 channels are available every 10 minutes

Summary so far

• Himawari-8, 9 Overview

Himawari-8, 9 make Full Disk observation every 10 minutes and Region observation every 2 and a half minutes. The number of observed bands is 16, and a variety of information can be obtained. These are useful for disaster prevention and so on.

RGB Composite

To get important information efficiently, RGB composites were developed. RGB images can be created by a simple process of image compositing. Various information is derivable by one RGB image.

• SATAID

SATAID has a variety of functions and easily display satellite images, RGB composites and other meteorological data.

Hands-on training on basic SATAID functions and displaying RGBs

It's time to practice using main SATAID functions in order to get used to its basic operations!

- Introduction of basic operations of SATAID
- Case studies
 - 1. Typhoon Mawar (T2302) approaching Pacific Islands
 - 25 May, 2023 12:00 UTC 26 May, 2023 12:30 UTC
 - 2. Volcanic eruption of Sheveluch, Russia
 - 10 April, 2023 12:00 UTC 11 April, 2023 18:30 UTC

Running SATAID and Opening Files

Selecting Satellite Images

	Zoom		Band	Wavelength [µm]	Himawari Cloud*	Himawari Cast*	WIS*
50W - 50M		V1		0.46	O (1 km)		
19-90 V		V2	Visible	0.51	O (1 km)		
50N	Fast Slow	VS		0.64	O (0.5 km)	O (1 km)	O (4 km)
104	14/04/2018 23:59 UTC	N1		0.86	O (1 km)	O (4 km)	
	_ Image	N2	Near Infrared	1.6	O (2 km)	O (4 km)	
30%	○ IR ○ WV ○ S1 ○ I4 ○ V5 ○ S2	N3	innarca	2.3	O (2 km)	O (4 km)	
C V1 C V2 C S3 C N1 C N2 C S4	C V1 C V2 C S3 C N1 C N2 C S4	4 WV W2	3.9	O (2 km)	O (2 or 4 km)	O (4 km)	
200	C N3 C W2 C S5 C W3 C MI C S6		6.2	O (2 km)	O (4 km)	O (4 km)	
C 03 C L2 C C 12 C CO C C 145 C HVS C C EIRC C EIRM	C 03 C L2 C S7 C 12 C C0 C S8			7.0	O (2 km)	O (4 km)	
	C I45 C HV5 C 59 C EIRc C EIRm	W3		7.3	O (2 km)	O (4 km)	
	Select data	MI	Infrarod	8.6	O (2 km)	O (4 km)	
	Coast ☐ Line ☐ Text ☐ NWP	O3	IIIIaieu	9.6	O (2 km)	O (4 km)	
44.75 Mar		IR		10.4	O (2 km)	O (4 km)	O (4 km)
Function C Gray C Info C Measur C Draw	Function	L2		11.2	O (2 km)	O (4 km)	
	C Gray C Info C Measur C Draw	12		12.3	O (2 km)	O (4 km)	O (4 km)
378	О Оbs С тс	СО		13.3	O (2 km)	O (4 km)	24

*(): spatial resolution

Selecting Satellite Images

Differential Images

- S1: Differential images 1 (IR I2)
- S2: Differential images 2 (I4 IR)
- S3: Differential images 3 (IR-WV)

Enhanced Images

- EIRc: Colored enhanced infrared images
- EIRm: Monochrome enhanced infrared images

Controlling animation

Zooming In/Out

Displaying Coast/Grid Lines

Adjusting Gradation

Outputting Images

Copy the current image to the clipboard

Displaying NWP data

Available NWP data

\mathbf{Symbol}	Content	Unit
Height	Altitude	gpm
Wind	Wind barb	$\mathbf{k}\mathbf{t}$
Isotac	Isotach	kt
Temp	Airtemperature	°C
T-TD	Dew-point depression	°C
P-Vel	Vertical p-velocity	hPa/h
Vort	Relative vorticity	10 ⁻⁶ /s
EPT	Equivalent potential temperature	K
VWS	Vertical wind shear	kt/1000ft
Rain	Precipitation (3 hours)	mm/3h
Psea	Sea level pressure	hPa
SSI	Showalter stability index	°C
RH	Relative humidity	%
Div	Horizontal divergency	10 ⁻⁶ /s
POT	Potential temperature	К
RiN	Richardson number	_
CAPE	Convective available potential energy	J/kg
PV	Potential vorticity	0.1PVU
Avor	Absolute vorticity	10 ⁻⁶ /s
Advc	Temperature advection	10 ⁻⁶ /s/h
Vadv	Relative vorticity advection	0.1°C/h
SH	Specific humidity	0/1g/kg
EXT	Extra element (diff. between levels)	undefined

Evaluation of brightness temperature

Display of NWP data

Click the upper-left of the window when NWP data are displayed

Wind, temperature and dew-point temperature

Brightness level

13/04/2018 23:52UTC

SSI :

LI :

KI :

Π :

SWEAT:

CAPE :

CIN :

Pos. :30.7200N 104.6800E Bri. : -9.5°C

17.4 (°C)

18.6 (°C)

12.1 (°C)

22.8 (°C)

0 (J/kg)

1295 (J/kg)

-10

Vert.4 (Stability)

(524hPa)(17765ft)

- 0 **X**

Wind, potential temperature, equivalent potential temperature and saturated equivalent potential tem

Vert.2 (Potential temp.)

Brightness level

13/04/2018 23:52UTC

Bri. : -9.5°C

280 300 320

POT

Pos. :30.7200N 104.6800E

(524hPa)(17765ft)

400

500

700

850

1000

360 K

340

-EPT ---- Saturation EPT

Wind hodograph or scorer number

Vert.3 (wind)

(524hPa)(17765ft)

Brightness level

13/04/2018 23:52UTC

: -9.5°C

os. :30.7200N 104.6800E

1000

- O X

100 kt

ania	Jucui	acce		-
pera	ature			
	- / -	•	``	

Vert 5 (Trajectory)

)	<i>,</i>
📧 Brightn	ess level		
14/04/2018	23:51UTC		-
Pos. :56.160	ON 107.1600E		
Bri. : -41.9%	C (376hPa)(24439	(ft)	
		POT	EPT
15 00UTC	56.1600N 107.1600E	150hPa 374	374
14 23UTC	55.8800N 105.9200E	149hPa 374	374
14 22UTC	55.6000N 104.6800E	149hPa 374	374
14 21UTC	55.3200N 103.4000E	149hPa 374	374
14 20UTC	55.0400N 102.0400E	149hPa 375	375
14 19UTC	54.7600N 100.6000E	149hPa 374	374
14 18UTC	54.4800N 99.1200E	148hPa 374	375
14 17UTC	54.2000N 97.6400E	147hPa 375	375 =
14 16UTC	53.9600N 96.1200E	147hPa 375	375
14 15UTC	53.7200N 94.5600E	146hPa 375	375
14 14UTC	53.4800N 92.9600E	146hPa 375	375
14 13UTC	53.2400N 91.3600E	146hPa 375	376
14 12UTC	53.0000N 89.7200E	145hPa 374	374
14 11UTC	52.7600N 88.0800E	145hPa 376	376
14 10UTC	52.5600N 86.4000E	146hPa 375	375
14 09UTC	52.3600N 84.7200E	146hPa 375	375
14 08UTC	52.2000N 83.0000E	146hPa 375	375
14 07UTC	52.0400N 81.2800E	146hPa 375	375
14 06UTC	51.8800N 79.5200E	146hPa 375	375
14 05UTC	51.7200N 77.7600E	145hPa 375	375
14 04UTC	51.5600N 76.0000E	145hPa 375	375
14 03UTC	51.4400N 74.2400E	145hPa 375	375
14 02UTC	51.3200N 72.5200E	145hPa 375	375
14 01UTC	51.2000N 70.8400E	140hPa 374	374
			*

SSI, KI, CAPE and CIN

Trajectories with positions, altitudes, potential temperature and equivalent potential temperature changed over time when all heights in "NWP data" window are checked.

Parallax

Click the upper-left of the window when NWP data are displayed

Evaluation of Movement (Vector)

Time-series of brightness temperature with NWP

Cross-sectional Evaluation

Isolines (Contours)

Histograms

Break (10minutes)

Hands-on training on basic SATAID functions and displaying RGBs

It's time to practice using main SATAID functions in order to get used to its basic operations!

- Introduction of basic operations of SATAID
- Case studies
 - 1. Typhoon Mawar (T2302) approaching Pacific Islands
 - 25 May, 2023 12:00 UTC 26 May, 2023 12:30 UTC
 - 2. Volcanic eruption of Sheveluch, Russia
 - 10 April, 2023 12:00 UTC 11 April, 2023 18:30 UTC

Overview of Case 1 Typhoon Mawar (T2302) approaching Pacific Islands

💋 SATAID -Japan Meteorological Agency-

Tips

Typhoon Mawar formed in the Caroline Islands at 06UTC on 20th May 2023.

This typhoon progressed northwestward while developing over the Mariana Islands and passed near Guam on the 24th.

Then this typhoon progressed westward east of the Philippines and approached Japan.

Let's have a familiarity with the SATAID basic operations!

Click "AUTO" button or push Space key to start animation. 42

Selecting Satellite Images

Change to IR image: push "F2" key Change to VS image: push "F5" key 43

Enhancing Color

Displaying Sandwich Images

Displaying RGB Images

Displaying color legends

Displaying RGB Images

Day Convective Storms RGB

	SATAID -Japan Meteorological Agency-		- 🗆 ×
RGB image list Day Convective Storms	Apply Image: Color interpr.	OOUTC ×	Zoom A AUTO AUTO Fast Slow 23/05/2023 23:54 UTC Image C IR CWV S SI C IR CVS S SI
Deep precipitating cloud with large Deep precipitating cloud with small Thin Cirrus clouds with large ice part Thin Cirrus clouds with small ice part Ocean	ice particles ice particles ticles ticles		I I I I S I I I I S I I I S I I S I I I S I I S I I S I I S I I S I I S I I S I I S I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <
Land Yellowish color convection with	indicates a strong updraft	Select "Option" and click "RGB list	st"

Creating New RGB Recipes

Comparison with RGB values

RGB Images by "Mix" Function

Normal	3. Ctrl + "Mix"	
	Setting the emphasis	X
<pre></pre>	Mode	
Fast Slow	C 6bit C 4bit C Cols C Mix F hour	Sandwich Close
	C Ext0 C Ext1 C Ext2 C Ext3	Clear
13/04/2018 23:59 UTC	C Cmap	Ciear
Image		
○ I4 ○ VS ○ S2		
○ V1 ○ V2 ○ 53		
0 N3 0 W2 0 55		
C 03 C L2 C 57		
C 12 C CO C 58		
C 145 C HV5 C 59	Setup of image mixture	×
C EIRc C EIRm		
Grid 10 V		
		ок
1. Click "Gray"		
	Image-1: IR 🛛 🔽 1.00 📥	Cancel
Gray C Info	Image-2: V5 🔻 1.00 🔺	Apply
C Measur C Draw		
C Obs C TC	Image-3: WV V 1.00	Initial
Gray		Turcial
Revs Color Initial		
Brit		
2. Click "Color"		

Overlaying NWP data

Data Evaluation

Evaluation of brightness temperature

Let's look at brightness temperature and altitude of cloud top of the cloud bands approaching Guam.

Tips

Zoom in: Ctrl + Shift + Left-Click Zoom our: Ctrl + Shift + Right-Click ₅₃

Data Evaluation

Data Evaluation Cross section 15.1000N 134.7000 d : 15.1300N 145.0500 hD-100 **Evaluation of cross section** 150 200 Himawa-9 IR 26/05/2023 00:00UTC 250 300 400 Himawa-9 IR 26/05/2023 00:00UTC 700 925 1000 135 × Cross section 2023 23:54UTC 15,1000N 134,7000F 15.1300N 145.050 112. -100. -80.0 -60.0 When NWP data are displayed, a cross--40.0 sectional graph of NWP data will be shown. -20.0 0.0 Tips 20.0 40.0 Click "Measur" and click "Cross". 60.0 80.0 Finally drag on image. 97.5 55 145E 135E 140E

Overview of Case 2 Volcanic eruption of Sheveluch, Russia

Sheveluch volcano in the Kamchatka Peninsula, Russia erupted at around 13UTC on the night of 10th April 2023.

The height of the volcanic plume was estimated to reach about 16 km!

Take full advantage of multiple band imagery and RGB composites according to the purpose.

Tips

Adjust animation speed: First-Slow scrollbar or up key and down key

Norma

Selecting Satellite Images

Displaying RGB Images

True Color RGB

Tips

Select "Option" and click "RGB list".

Displaying RGB Images RGB image list \times Ash Ŧ Color interpr. Apply Ash RGB Cold, thick, high-level clouds 🖉 SATAID -Japan Meteorological Agency-X Register(G) Option(O) Help(H) Norma Thin Cirrus clouds, Contrails Himawa-9 S1 10/04/2023 14:30UTC AUTO ► Volcanic SO2 clouds *** 💋 SATAID - Japan Meteorological Agency-Volcanic Ash clouds Register(G) Option(O) Help(H) Himawa-9 S1 10/04/2023 21:00UTC AUTO ~~ Fast 10/04/2023 20:51 UTC · 51 52 EIRm 10 -Line NWP RADAR [Wind Grav C Info C Draw C Measur CTC C Obs Volcanic ash + gas (SO₂) plume appears yellow. Volcanic ash plume appears reddish. 59 Start the animation by clicking [AUTO]button

Displaying RGB Images

Ash RGB

The volcanic ash is seen in red to yellow as it flows counterclockwise to the southeast of the volcano.

Overlaying NWP data

Displaying RGB Images

Displaying RGB Images

Airmass RGB	RGB image list ×
SATAID -Japan Meteorological Agency-	
Register(G) Option(G) Help(H)	Armass Apply Color interpr. Apply Color interpr. Thick, high-level clouds Thick, mid-level clouds Thick, low-level clouds (low latitude) Thick, low-level clouds (high latitude) IET Cold Airmass Warm Airmass (high humidity at upper tropopause) Warm Airmass (low humidity at upper tropopause)
Volcanic ga upper atmo	<pre>s (SO₂) in the middle and sphere appears reddish.</pre>

Summary

- We accomplished hands-on practical training of RGB case studies by using SATAID in this presentation.
- SATAID can display superimposed satellite imagery and NWP data.
- SATAID can display RGB imagery by simple operation.
- There are more uses, so please also try using it after this presentation.

Thank you for your participation!

Introduction to SATAID

For more information on SATAID, please see Introduction Guide for SATAID.

https://www.wis-jma.go.jp/cms/sataid/file/QuickGuide_to_SATAID.pdf