GEOSTATIONARY VS POLAR ORBIT SATELLITE DATA: MAKING THE CASE FOR BOTH!

Jessica Braun, UW-Madison Cooperative Institute for Meteorological Satellite Studies

Geostationary Satellite Orbit

Cooperative Institute for Meteorological Satellite Studies University of Wisconsin - Madison

Polar Satellite Orbit

Geo vs Polar Orbit Comparison

Cooperative Institute for Meteorological Satellite Studies University of Wisconsin - Madison

Geo vs Polar Orbit Comparison

Sun-Synchronous Orbit 200-1,00 Km High

> Geostationary Orbit 35,800 Km High

Polar Orbit _____ 200-1,000 Km High

A Sun-synchronous orbit is one where the satellite passes over any given point of the planet's surface at the same local solar time.

Geo vs Leo Satellites

Geo

- High Spatial Resolution
 - AHI: 0.5 km 2 km
 - GOES-R: 0.5 km 2km
- Moderate Spectral Resolution
- Well Calibrated
- High Temporal Coverage
- Hemispheric Observations
- No Microwave
- Most no IR sounders (for now)

- Leo
 Higher Spatial Resolution
 VIIRS 350m 1km
- Moderate Spectral Resolution with some Unique Bands
- Very Well Calibrated
- Low Temporal Coverage (getting better)
- Global Observations
- Microwave Sounders
 - Hyperspectral IR Sounders

AHI Instrument Characteristics

AHI Band	AHI Approximate Central Wavelength (μm)	Туре	AHI Resolution (km)	Nickname	MTSAT Resolution (km)
1	0.47	Visible	1	Blue	
2	0.51	Visible	1	Green	
3	0.64	Visible	0.5	Red	1
4	0.86	Near-Infrared	1	Veggie	
5	1.6	Near-Infrared	2	Snow/Ice	
6	2.3	Near-Infrared	2	Cloud Particle Size	
7	3.9	Infrared	2	Shortwave Window	4
8	6.2	Infrared	2	Upper-level Water Vapor	4
9	6.9	Infrared	2	Mid-level Water Vapor	
10	7.3	Infrared	2	Lower-level Water Vapor	
11	8.6	Infrared	2	Cloud-Top Phase	
12	9.6	Infrared	2	Ozone	
13	10.4	Infrared	2	"Clean" Longwave Window	4
14	11.2	Infrared	2	Longwave Window	
15	12.4	Infrared	2	"Dirty" Longwave Window	4
16	13.3	Infrared	2	CO ₂ Longwave	

Source: http://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/spsg_ahi.html

VIIRS Instrument Characteristics

		Band No.	Wave-	Horiz Sam (km Downtrack	ple Interval < x Crosstrack)	Driving EDRs	Radi- ance	Ltyp or	Sign (d	al to Noise limensionles	Ratio ss) ins)
			(um)	Nadir	End of Scan		Range		Required	Predicted	Margin
		M1	0.412	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	44.9	352	441	25%
						Aerosols	High	155	316	807	155%
		M2	0.445	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	40	380	524	38%
						Aerosols	High	146	409	926	126%
	es	M3	0.488	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	32	416	542	30%
N	<u></u>					Aerosols	High	123	414	730	76%
		M4	0.555	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	21	362	455	26%
II¥	 ≦					Aerosols	High	90	315	638	102%
5		1	0.640	0.371 x 0.387	0.80 x 0.789	Imagery	Single	22	119	146	23%
>	li⊒i	M5	0.672	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	10	242	298	23%
	l <u>io</u>					Aerosols	High	68	360	522	45%
		M6	0.746	0.742 x 0.776	1.60 x 1.58	Atmospheric Corr'n	Single	9.6	199	239	20%
		12	0.865	0.371 x 0.387	0.80 x 0.789	NDVI	Single	25	150	225	50%
		M7	0.865	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	6.4	215	388	81%
						Aerosols	High	33.4	340	494	45%
CCD		DNB	0.7	0.742 x 0.742	0.742 x 0.742	Imagery	Var.	6.70E-05	6	5.7	-5%
		M8	1.24	0.742 x 0.776	1.60 x 1.58	Cloud Particle Size	Single	5.4	74	98	32%
	F	M9	1.378	0.742 x 0.776	1.60 x 1.58	Cirrus/Cloud Cover	Single	6	83	155	88%
	lΫ	13	1.61	0.371 x 0.387	0.80 x 0.789	Binary Snow Map	Single	7.3	6.0	97	1523%
ЦĘ	e l	M10	1.61	0.742 x 0.776	1.60 x 1.58	Snow Fraction	Single	7.3	342	439	28%
ll₹	Ę	M11	2.25	0.742 x 0.776	1.60 x 1.58	Clouds	Single	0.12	10	17	66%
ူစို	ပ္ထ	14	3.74	0.371 x 0.387	0.80 x 0.789	Imagery Clouds	Single	270 K	2.500	0.486	415%
	Ŧ	M12	3.70	0.742 x 0.776	1.60 x 1.58	SST	Single	270 K	0.396	0.218	82%
	l₫	M13	4.05	0.742 x 0.259	1.60 x 1.58	SST	Low	300 K	0.107	0.063	69%
						Fires	High	380 K	0.423	0.334	27%
	I. I	M14	8.55	0 742 x 0 776	1.60 x 1.58	Cloud Top Properties	Single	270 K	0.091	0.075	22%
Ľ	ប	M15	10.763	0.742 x 0.776	1.60 x 1.58	SST	Single	300 K	0.070	0.038	85%
N		15	11.450	0.371 x 0.387	0.80 x 0.789	Cloud Imagery	Single	210 K	1.500	0.789	90%
	đ	M16	12.013	0.742 x 0.776	1.60 x 1.58	SST	Single	300 K	0.072	0.051	42%

Visible Band Comparison

Near Infrared Band Comparison

VIIRS I-Band 2 (.86 µm) Reflectances (375 m)

2:I1 < >

1:C03 🤤

Lon: 148.40 Lat: 11.30 Val: 0.03, NPP VIIRS 2018-03-26 03:35

1:C04

Infrared Band Comparison

Slido Question

- Which of the following would be useful to you in your job?
 - Polar visible band imagery?
 - Polar near infrared imagery?
 - Polar infrared imagery?
 - None of the above?

Why?

This demonstrates a couple of uses for the higher spatial resolution data that compliments GEO data. Can you think of any others?

Slido Question

How would you look at smoke or fog at night?

- IR imagery
- RGBs
- Level 2 Product
- Other (please note in Q&A)

VIIRS Day/Night Band

- Visible wavelength available at night!
 - 735 m spatial resolution centered at about .7 microns
- What can now be seen at night?
 - Cities
 - Smoke, Dust, Ash
 - Low Clouds/Fog
 - Fires, Volcanoes (Lava)
 - Auroras
 - Lightning

 How much can be seen depends heavily on lunar illumination – Phase of moon, and rising/setting times

VIIRS Day/Night Band

Fig. I. Nighttime visible detection capabilities (a) with and (b) without lunar illumination.

Taken from: T., Miller, S. D., Turk, F. J., Schueler, C., Jullian, R., Deyo, S., Dills, P., and Wang, S., 2006: The NPOESS VIIRS Day/Night Visible Sensor, Bulletin Am. Met. Society, DOI:10.1175/BAMS-87-2-191, p. 191-199.

Cooperative Institute for Meteorological Satellite Studies University of Wisconsin - Madison

VIIRS Fog Detection Capability Day/Night Band 6 May 2012

VIIRS Day/Night Band Lightning Detection 30 June 2012

Illumination from oil fields

Lightning

Cooperative Institute for Meteorological Satellite Studies University of Wisconsin - Madison Suomi NPP VIIRS Day Night Band Sat 08:55Z 30-Jun 12

Side

ightin

m Sun

Ships seen in the VIIRS Day/Night Band

Aurora Borealis S-NPP VIIRS 25 March 2018

VIIRS Day/Night Band Smoke Detection 8 April 2012

Smoke from County Line Fire in northern Florida

SSEC/CIMSS Cooperative Institute for Meter University of Wisconsin - Madison

Suomi NPP VIIRS Day Night Band Sun 06:30Z 08-Apr

Timeline Photos

Back to Album • US National Weather Service San Francisco Bay Area/Monterey California's Photos • US National Weather Service San Francisco Bay Area/Monterey California's Page

Previous - Next

US National Weather Service San Francisco Bay Area/Monterey California Album: Timeline Photos

Tropical Storm Ela in the Pacific Low Level Circulation Center (LLCC) Located to the Southwest of the Deep Convection associated with the system as seen by the VIIRS Day/Night Band

Slido Question

Where is the center of the Tropical Storm Ela?

□ B □ C □ D

I need more information.

Tropical Storm Ela in the Pacific Low Level Circulation Center (LLCC) Located to the Southwest of the Deep Convection associated with the system as seen by the VIIRS Day/Night Band

Tropical Storm Ela in the Pacific

TROPICAL STORM ELA **DISCUSSION NUMBER** 7 NWS CENTRAL PACIFIC HURRICANE CENTER HONOLULU HI EP042015 500 AM HST THU JUL 09 2015 A 1052Z VIIRS DAY/NIGHT BAND IMAGE WAS **INSTRUMENTAL IN** HELPING TO LOCATE THE PARTIALLY EXPOSED CENTER OF ELA THIS MORNING.

20

40

+0-

20

10–Oct–2023 20:12:15 UTC JMA Himawari–9 AHI / Red Visible / 0.64 um / Band 3

SFC PLOTIAMERICANI at 20 UTC on 10 Oct 2023

P

0

JMA HIMAWARI-9 AHI - RED VISIBLE 0.64 MICROMETERS (BAND 3) - 20:12:15 UTC 10-0CT-2023 - CIMSS / SSEC / UNIVERSITY OF WISCONSIN - MADISON

JMA HIMAWARI-9 AHI - IR WINDOW 10,4 MICROMETERS (BAND 13) - 20:12:15 UTC 10-OCT-2023 - CIMSS / SSEC / UNIVERSITY OF WISCONSIN - MADISON

Level 2 Products

Why use them?

VIIRS ACSPO Advanced Clear-Sky Processor for Ocean

VIIRS True Color Image 9 February 2015 18:53 UTC

VIIRS Aerosol Optical Thickness 9 February 2015 18:53 UTC

AOT

Cooperative University of

VIIRS Aerosol Optical Depth

20190515

ABI Aerosol Optical Depth Animation

20190515 1500

How do I make these products?

CSPP Leo Software

Community Satellite Processing Package 🏭

History

Forum Meeti

What's New

Retrieval Software v2.1

 CSPP GCOM-W AMSR2 GAASP Level 2 Software

Patch Version 1.0.2

 Polar2Grid Reprojectio Software v3.0

 MiRS Microwave Retrieval Software v3.0

VIIRS Aerosol, Snow

Land EDR v1.2

Reflectance v1.1

VIIRS Surface

Cloud, Ice (ASCI) and

HEAP NUCAPS Sounde

Retrieval Software v2.0

ACSPO Imager SST v2.0

VIIRS Active Fire

The Community Satellite Processing Package (CSPP) supports the Direct Broadcast (DB) meteorological and environmental satellite community through the packaging and distribution of open source science software. CSPP supports DB users of both polar orbiting and geostationary satellite data processing and regional real-time applications through distribution of free open source software, and through training in local product applications. CSPP is funded through NOAA JPSS.

Applications

Joint Polar Satellite System (JPSS) Products

CSPP software in support of the JPSS mission:

- VIIRS, ATMS, CrIS and OMPS calibration and geolocation software (Raw Data Records (RDRs) to Sensor Data Records (SDRs)) supporting S-NPP and NOAA-20, and NOAA-21 satellites; Learn more ...
- VIIRS Environmental Data Records (EDRs), including a subset of Land, Ocean and Atmosphere Products;
 Learn more about VIIRS Aerosol, Snow/Ice, Volcanic Ash and Land Environmental Data Records ...
 Learn more about Surface Reflectances ...
- Reprojection software for the creation of high quality VIIRS, MODIS, AVHRR and EDR images in a variety of output formats including GeoTIFF, AWIPS NetCDF and KMZ.
 Learn more ...
- NOAA/NESDIS/STAR NOAA Unique Combined Atmospheric Processing System (NUCAPS) Hyperspectral Sounding Retrieval Software packaged now the Hyper-Spectral Enterprise Algorithm Package (HEAP). Learn more ...
- CrtS, AIRS and IASI University of Wisconsin dual regression single Field-of-View (FOV) Temperature, Moisture, Surface and Cloud Retrieval Environmental Data Record (EDR); Learn more...
- VIIRS, ATMS, CrIS and EOS Aqua and Terra HYDRA2 multispectral data analysis toolkit; Learn more ...
- NOA4/NESDIS/STAR Microwave Integrated Retrieval System (MIRS) supporting S-NPP ATMS, NOAA-18, 19 and Metop-A, B, C AMSU-A and MHS instruments; Learn more ...
- VIIRS, MODIS and AVHRR (POES and Metop) Cloud and Land Surface Retrievals from CLAVR-x.
 Lear more ...
- International ATOVS Processing Package (IAPP) Retrieval Software, supporting POES and Metop HIRS, AMSU-A and MHS ATOVS Instruments. Learn more ...
- NOAA/NESDIS/STAR ACSPO Advanced Clear-Sky Processor for Oceans software supporting VIIRS, AVHRR and MODIS imagers. Learn more ...
- NOAA/NESDIS/STAR Active Fire Software supporting the VIIRS imager.
 Learn more ...
- Sounder Quicklook Software for display of NUCAPS, HSRTV, MiRS and IAPP Atmospheric Retrievals.

CIMSS

Free software for generating geophysical products from polar orbiting data.

Supports:

- S-NPP, NOAA-20
 - VIIRS (Imager)
 - CrIS (Infrared Sounder)
 - ATMS (Microwave Sounder)
 - OMPS (Ozone Mapping and Profiler Suite).
- Metop-B/C, NOAA-18/19, and many more!

https://cimss.ssec.wisc.edu/cspp/

CSPP Leo Software

CSPP Package	Product Description
Sensor Data Records	VIIRS, CrIS, and ATMS geolocated and calibrated earth observations (NOAA algorithm).
Polar2Grid	Reprojected imagery (single and multi-band) in GeoTIFF and AWIPS formats.
VIIRS ASCI	VIIRS imager aerosol optical depth, cloud properties, sea ice, and volcanic ash (NOAA algorithm).
VIIRS Active Fires	VIIRS imager wildfire detection (NOAA algorithm).
VIIRS Flood Detection	VIIRS imager flood detection (NOAA algorithm).
VIIRS Surface Reflectance	VIIRS imager surface reflectance, NDVI, and EVI (NOAA algorithm).
HSRTV	Hyperspectral infrared sounder retrievals of temperature and moisture profiles, cloud properties, total ozone, and surface properties.
MIRS	Microwave sounder retrievals of temperature and moisture profiles; surface properties; snow and ice cover; rain rate; and cloud/rain water paths (NOAA algorithm).
CLAVR-x	Multispectral imager retrievals of cloud properties; aerosol optical depth; surface properties; ocean properties (NOAA algorithm).
HEAP	Combined hyperspectral infrared sounder and microwave sounder retrievals of temperature and moisture profiles, cloud cleared radiances, and trace gases (NOAA algorithm).
IAPP	Combined infrared sounder and microwave sounder retrievals of temperature and moisture profiles, water vapor, total ozone, and cloud properties.
ACSPO	Multispectral imager retrievals of sea surface temperature (NOAA algorithm).
GAASP	Microwave retrievals of ocean, precipitation, soil, and cryosphere properties (NOAA algorithm).
Sounder Quicklook	Projected 2D maps of temperature and water vapor retrievals, and Skew-T profiles for individual atmospheric profiles.

CSPP Leo Software

CSPP Software Package	SNPP, NOAA-20	Metop-B Metop-C	NOAA-18 NOAA-19	Terra	Aqua	GCOM-W1
Sensor Data Records / Level 1	VIIRS, CrIS, ATMS	Provided by AAPP & OPS-LRS	Provided by AAPP	Provided by SeaDAS	Provided by SeaDAS	Provided by NOAA
Polar2Grid	VIIRS, CrIS, ATMS	AVHRR, AMSU, MHS	AVHRR, AMSU, MHS	MODIS	MODIS, AIRS	
VIIRS ASCI	VIIRS					
VIIRS Active Fires	VIIRS					
VIIRS Flood Detection	VIIRS					
VIIRS Surface Reflectance	VIIRS	6				
HSRTV	CrIS	IASI			AIRS	
MIRS	ATMS	AMSU, MHS	AMSU, MHS			
CLAVR-x	VIIRS	AVHRR	AVHRR	MODIS	MODIS	
HEAP	CrIS, ATMS	IASI, AMSU				
IAPP		HIRS, AMSU, MHS	HIRS, AMSU, MHS			
ACSPO	VIIRS	AVHRR	AVHRR	MODIS	MODIS	
GAASP						AMSR-2
Sounder Quicklook	CrIS, ATMS	IASI, AMSU, MHS	AMSU, MHS		AIRS	

CSPP Geo Software

Community Satellite Processing Package for Geostationary Data

The CSPP Geo project serves the direct broadcast community by providing software to generate geophysical products from geostationary satellite data.

All CSPP Geo software is:

- · free to download and use
- compatible with 64-bit CentOS7 Linux platforms
- · distributed as binary tarballs that are easy to install and run
- packaged with all required third-party software included
- released with an optional test data package
- capable of generating "quicklook" images from products.

Supported instruments include the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM) and space weather instruments onboard the GOES-R Series of satellities; the Japanese Advanced Himawari Imager (AHI) on Himawari-8 and Himawari-9; the Korean Advanced Meteorological Imager (AMI) on GK-2A, and the Chinese Advanced Geostationary Radiation Imager (AGRI) on FY-4A and FY-4B.

Software packages are currently offered to process data acquired from a variety of satellite instruments to generate retrieved geophysical products and high quality imagery, and to process the raw direct broadcast data stream as received from GOES-R series satellites.

More >>

Hardware requirements vary by software package and by the type and volume of data being processed. Refer to the individual package descriptions for more information. Note that the stated hardware requirements are for data processing, and do not include routine quicklook image generation.

Capabilities: The software is capable of processing GOES Rebroadcast (GRB) data received from the new generation GOES-16, GOES-17, and GOES-18 satellites that launched in 2016, 2018, and 2022 respectively. Level 2 ABI products are generated by reference implementations of the baseline GOES-R product algorithms which have been adapted for direct broadcast use.

We also developed Level 2 product generation software for Himawari AHI data, using algorithms developed for GOES-R which were updated and adapted by the original science teams. This away users an early look at the GOES-R products and elso provides moders that are useful for

What's New

9 Oct 2023

New! GRB Software Package Patch Released (v1.0.28)

20 Dec 2022

Gridded GLM Version 1.0 Software Package Released (v1.0)

12 Dec 2022

Geo2Grid Image Creation Software Package Released (v1.1)

9 Dec 2022

GEOCAT Version 1.1 Beta Software Package Released (v1.1beta1)

25 Oct 2022

GRB Software Package Patch Released (v1.0.27)

19 Jul 2022

AIT Framework Version 2.1 Beta Software Package Released (v2.1beta1)

13 Jan 2022

AIT Framework Version 2.0 Beta Software Package Released (v2.0beta4)

11 Aug 2021

GRB Software Package Patch Released (v1.0.26) 1 Jul 2021 Free software for generating geophysical products from geostationary satellite data. Supports: AHI (Himawari-8,-9) ABI (GOES-16, -17, -18) AMI (GK-2A) AGRI (FY-4A, -4B)

https://cimss.ssec.wisc.edu/csppgeo/

CSPP Geo

CSPP Geo Software Packages

Software Package	Instruments	Description
<u>GRB</u>	All GOES-16, GOES- 17, and GOES-18 instruments	The GRB software processes the raw GOES Rebroadcast (GRB) data stream, generating products in real-time for all of the new generation GOES-R series instruments. More >>
AIT Framework	GOES-16, GOES-17 and provisionally GOES-18 ABI	The AIT Framework software generates Level 2 products using reference implementations of the baseline GOES-R algorithms. More >>
GEOCAT	Himawari-8 AHI, Himawari-9 AHI	The GEOCAT software will generate Level 2 products using modified versions of algorithms that were developed for GOES-R. More >>
<u>Geo2Grid</u>	GOES-16, GOES-17, GOES-18 ABI, Himawari-8, Himawari-9 AHI, GEO- KOMPSAT AMI, FY- 4A, FY-4B AGRI	The Geo2Grid software provides an easy way to efficiently create high quality images from Geostationary Imager data. More >>
Gridded GLM	GOES-16, GOES-17, GOES-18 GLM	The Gridded GLM software creates Gridded Geostationary Lightning Mapper products mapped to the ABI grid. More >>
AXI Tools	GOES-16, GOES-17, provisionally GOES- 18 ABI, and Himawari-8 AHI	AXI-Tools is a binary utility package that converts AHI and ABI reflectance and brightness temperatures into SCMI format. More >>
GVAR	GOES-13 and GOES- 15 Imager	Legacy Package The GVAR package processes data from the current GOES Imager received via the GVAR data stream. More >>

Slido Question

- How do you receive satellite data?
 - Satellite Antenna Process on site.
 - Internet Satellite data (netCDF, HSD, Hcast, other)
 - Internet Images (GeoTIFF, PNG, GIF, JPEG)
 - Other (please describe in comment)

What if I am unable to create Level 2 products own my own?

CSPP GeoSphere

- Data acquired in realtime from the GOES-R series of satellites on an antenna located at UW-Madison.
- Free to access!
- Currently supports GOES-18 and GOES-16 ABI Imager.
- Contains all sectors (FD, CONUS, Meso1, Meso2)
- Currently supports single band imagery and "True Color and Night Micro"
 - ***Future improvements include Level 2 products (Cloud Properties, for example)**

https://geosphere.ssec.wisc.edu/

CSPP GeoSphere

CSPP GeoSphere – Tonga Search Results

NOAA-20 and SNPP Data Access

https://noaa-jpss.s3.amazonaws.com/index.html

AWS S3 Explorer noaa-jpss / NOAA20 / VIIRS		Hide folders?	≮ Folder ¥ Bucket	9
Show 50 v entries			Search:	
Object 11	Last Modified	Timestamp ↓↑	Size	Ļ
NOAA20_VIIRS_Aerosol_Detection_EDR/				
NOAA20_VIIRS_Aerosol_Detection_EDR_Reprocessed/				
NOAA20_VIIRS_Aerosol_Optical_Depth_EDR/				
NOAA20_VIIRS_Aerosol_Optical_Depth_EDR_Reprocessed/				
NOAA20_VIIRS_Aerosol_Optical_Depth_Gridded_Reprocessed/				
NOAA20_VIIRS_AF_I-Band_EDR_NRT/				
NOAA20_VIIRS_Cloud_Mask_EDR/				
NOAA20_VIIRS_Cloud_Top_Height_EDR/				
NOAA20_VIIRS_Day-Night-Band_SDR_GEO_GDNBO/				
NOAA20_VIIRS_Day-Night-Band_SDR_SVDNB/				
NOAA20_VIIRS_Daytime_Cloud_Optical_and_Microphysical_Properties_(DCOMP)_EDR/				
NOAA20_VIIRS_Flood_Map_Global_VFMGLB/				
NOAA20_VIIRS_I-Band_01_SDR_SVI01/				
NOAA20_VIIRS_I-Band_01_SDR_SVI01_NRT/				
NOAA20_VIIRS_I-Band_02_SDR_SVI02/				
NOAA20_VIIRS_I-Band_02_SDR_SVI02_NRT/				
NOAA20_VIIRS_I-Band_03_SDR_SVI03/				
NOAA20_VIIRS_I-Band_03_SDR_SVI03_NRT/				
NOAA20_VIIRS_I-Band_04_SDR_SVI04/				
NOAA20_VIIRS_I-Band_04_SDR_SVI04_NRT/				
NOAA20_VIIRS_I-Band_05_SDR_SVI05/				
NOAA20_VIIRS_I-Band_05_SDR_SVI05_NRT/				
NOAA20_VIIRS_I-Band_SDR_TC_GEO_GITCO/				
NOAA20_VIIRS_I1_IMG_EDR_VI1BO/				
NOAA20_VIIRS_I2_IMG_EDR_VI2BO/				
NOAA20_VIIRS_I3_IMG_EDR_VI3BO/				
NOAA20_VIIRS_I4_IMG_EDR_VI4BO/				
NOAA20_VIIRS_I5_IMG_EDR_VI5BO/				

Cooperative Institute for Meteorological Satellite Studies University of Wisconsin - Madison

Show Objec

OMPS

Showin

NASA Worldview – Free!

https://worldview.earthdata.nasa.gov/

2000 km 1000 mi

EPSG:4326

-53 6936° -70 6331°

NASA Worldview

Worldview	← Reset aerosol				× × • • • • •
Layers 🗮 Events 📩 Data	Showing 37 out of 1070				the start
RENCE	COVERAGE Available 2023 OCT 29	31	Suomi NPP / VIIRS		
Place Labels	Always Available	2			
OpenStreetMap contributors, Natural Earl		╴║└	(Land and Ocean)		the second
oastlines / Borders / Roads		37	Suomi NPP / VIIRS		and the second second
OpenStreetMap contributors	Air Ouality	36	Deep Blue Aerosol Optical Thickness		and the second
OpenStreetMap.contributors	Dust Storms	34	(Land and Ocean)		and the second s
	Fires	34	Suomi: NPP / VIIKS	No layer selected.	
/ERS	Smoke Plumes	34	Dark Target Aerosol Angstrom Exponent	Select a layer to view details here!	
rected Reflectance (True Color)	Ash Plumes	33	(Ocean) Suomi NPP / VIIRS		and the first have
AA-20 / VIIR5	Human Dimensions	2			the factor of the
mi NPP / VIIRS	MEASUREMENTS	- L	Dark Target Aerosol Optical Thickness		
rected Reflectance (True Color)	Aerosol Optical Depth	29	Suomi NPP / VIIRS		
n / MODIS	Aerosol Index	4	Acress Ontical Death		and the second
rected Reflectance (True Color)	Particulate Matter	2	Terra / MODIS		
ra / MODIS	Aerosol Albedo		Acress Onticel Denth		and the second
oup Similar Layers	Aerosol Type		Aqua / MODIS		and the second sec
Lavers Start Comparison	SOURCE	• F=			
	Aqua / MODIS	6	Depth		
	Aura / OMI	6	Terra and Aqua / MODIS		
	Terra / MODIS	6	MAIAC Aerosol Optical Depth		
A MA	Suomi NPP / VIIRS	5	Terra and Aqua / MODIS		
and the second	SeaWiFS Deep Blue	4	Aerosol Optical Depth 3km		
and the second	+ More		(3km, Land and Ocean)		
	PERIOD	• L	Terra / MODIS		
1 4 1 4 1 C	Daily	29	Aerosol Optical Depth 3km		
	Monthly	6	(3km, Land and Ocean)		and the second second
A CALL STORE ST	DAY/NIGHT	• H-	Ngaar Woold		
	Day	30	Deep Blue Aerosol Angstrom Exponent		
	DAAC/SIPS	-	Terra / MODIS		
the second second	LAADS DAAC	17			100000000000000000000000000000000000000
Contraction of the second	GES DISC	15	Deep Blue Aerosol Angstrom Exponent		
	MODAPS SIPS	14	Aqua / MODIS		2000 km
	Atmosphere SIPS	4	Dark Target Aerosol Angstrom Exponent		1000 mi
	OMI/Ozone SIPS	3	(Ocean)		51 1373° 03 5760° ED
	SEDAC	2			51.15/5 ,-93.5/08 EP

NASA Worldview

82.9915°, -159.6430° EPSG:4326

▲ ▲ 1 DAY			DAY
2023 OCT 29 🎸 🔪 🔪 🗖 🚺			
	SEP 2023	OCT 2023	

NASA Worldview

Downloading data will be performed using NASA's Earthdata Search application.

Why are some layers not available?

Deep Blue Aerosol Angstrom Exponent (Land and Ocean) Suomi NPP / VIIPS

🔵 Near Real-Time - v1.1 🚯

🔵 Standard - v1.1 🕄

Deep Blue Aerosol Optical Thickness (Land and Ocean)

🔵 Near Real-Time - v1.1 🖲

🔵 Standard - v1.1 🚯

Corrected Reflectance (True Color) NOAA-20 / VIIRS

Near Real-Time - v2.1 (1)

- 🔵 Near Real-Time v2.1 🕄
- 🔵 Near Real-Time v2.1 🔅
- 🔵 Near Real-Time v2 🚯

Corrected Reflectance (True Color) Suomi NPP / VIIRS

- 🔵 Near Real-Time v2 🗈
- 🔵 Near Real-Time v2 🚯
- Near Real-Time v2 3
 Near Real-Time v2 3

2023 OCT 29

nttps://worldview.earthdata.nasa.gov

DOWNLOAD VIA EARTHDATA SEARCI

Free to download data – just requires a Free NASA Earthdata Account.

SEP 2023

200 mi

earch for places or enter

ш

OCT 2023

43.3498°, 89.4239° EPSG:4326

DAY

Thank you!

Questions?

jessica.braun@ssec.wisc.edu

