

Satellite Remote Sensing of Clouds - Retrievals and Validations -

Takashi Y. NAKAJIMA (Tokai U.) Minrul WANG (Tokai U.) Yu MATSUMOTO (Tokai U.) Yousuke SATO (Hokkaido U.) Haruma ISHIDA (JMA/MRI) Kentaroh SUZUKI (Univ. Tokyo) Takashi M. NAGAO (Univ. Tokyo)

AOMSUC-13, Training Ever Nov. 3, 2023

Introduction

 Clouds exert an important influence on the *water* and *energy* balances and processes, thus, more observations are required for understanding of *cloud lifecycle*.

e.g. Randall et al. (1984) pointed out that a mere 4% increase of the Earth's area covered by low-level clouds, compensates for a projected 2–3 K rise in global temperature due to a doubling of CO_2 .

- We have long history of the passive sensing of clouds, using the NOAA, ADEOS-2, TRMM, Terra/Aqua, and Geostationary satellites ...
- Recently, active sensing open the door toward better understanding of clouds, in terms of cloud evolution process.

Statistically consistent with our understanding of the aerosol effects, but how about the process is?

Cloud Optical Thickness (COT)

Cloud Droplet Radius (CDR)

Aerosol Optical Thickness (AOT)

ADEOS-II Global Imager

April, 2003

Introduction

Strategy

CFODD

alidation

Summary

Directions of the cloud research

- Long term record → climate change study
 AVHRR→MODIS→VIIRS→GLI→GCOM, and Geostationary(s)...
- 3-D observation → cloud evolution process *CloudSat, Calipso, EarthCARE, Active + Passive sensors*
- Observation + Model simulation...

Simulation of the cloud evolution

Need investigating consistency/difference between model and observation

 How to observe vertical structure of clouds?

Stratocumulus clouds

Strategy of cloud observation

Sounding of cloud properties using passive imager

Observations suggested the differences between R37, R21.(Nakajima et al. 2009 etc)

Different **penetration efficiencies** & Different **sensitivities to droplet size** may induce the differences. (Nakajima *et al.*, 2010a)

More investigations by...

- Simulate cloud remote sensing using a spectralbin microphysical cloud model.
- Estimate 2-D Weighting Function of R16, R21, R37 as functions of <u>COD</u> & <u>CDR</u>. (an extended Platnick's W.F.)

Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010: Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet size. J. Atmos. Sci., 67, 1884-1896.

EarthCARE

EarthCARE

- will be launched in middle 2024.
- has Cloud Profiling Radar (CPR), Multispectral Imager (MSI), Broad Band Radiometer (BBR)

Illingworth, A., and Coauthors, 2015: THE EARTHCARE SATELLITE: THE NEXT STEP FORWARD IN GLOBAL MEASUREMENTS OF CLOUDS, AEROSOLS, PRECIPITATION AND RADIATION. Bulletin of the American Meteorological Society, 96, 1311-1332.

A-Train : CloudSat (2006-) + Aqua (2002-)

New visualization method of the radar reflectivity, CFODD (Contoured Frequency by Optical Depth Diagram)

Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010: Droplet growth in warm water clouds observed by the A-Train. Part II: A Multi-sensor view. J. Atmos. Sci., <u>67</u>, 1897-1907.

Visualizing Cloud Growth from space

Nakajima et al. (JAS, 2010b), Suzuki et al. (JAS, 2010b)

The Global CFODD obtained by A-Train (CloudSat+Aqua)

Global (Land) Global (Ocean)

Satellite Data (April, 2007 to 2014)

Matsumoto et al. 2022

Diagnosis of the Aerosol Effects using CFODD

Suzuki, K. J-C. Golaz, G. L. Stephens, 2013: Evaluating cloud tuning in a climate model with satellite observations, Geo. Res. Lett., 40, 4464-4468.

GCOM-C/SGLI cloud product process

CLAUDIA algorithm (for cloud flags)

Tests	Ocean		Land		Polar	
	Group	Threshold	Group	Threshold	Group	Threshold
R0.67 (land or polar) or R0.87 ocean)	1	R min +0.12∓0.075	1	R min +0.18∓0.075	1	R min +0.16∓0.04
R0.87/R0.67	1	0.78 ± 0.12 1.25 ∓ 0.1	1	0.78 ± 0.12 1.4 ± 0.3	-	-
NDVI = (R0.87 - R0.67)/(R0.87 + R0.67)	1	$-0.16 \pm 0.06 \ 0.34 \mp 0.12$	1	$-0.16 \pm 0.06 \ 0.34 \mp 0.12$	1	$-0.2 \pm 0.02 \ 0.4 \mp 0.03$
R0.87/R1.64		-	1	0.96 ± 0.1	-	_
R1.24/R0.55	-	_	1	1.86∓0.12		
SW BT3.9-BT3.7				> - 11[K]		
SW BT11-BT3.7				> - 15[K]		
R0.905/R0.935	1	2.970.1	_			
SW BT11-BT3.7		> - 15[K]				
SW R0.905		< 0.08				
BT11	2	267 K ∓6K	R	297.5[K]∓5[K]	-	(mark)
R1.38	2	0.04 = 0.01	-	-	-	-
BT6.7	2	220 K = 10 K	2	220[K] ∓10[K]		
BT11-BT3.9	2	-8[K]∓4[K]	2	-20[K]∓4[K]	1	-7[K]∓3[K]-
RT13.9	2	226[K]#4[K]	2	224(K):::4(K)	-	

CAPCOM algorithm (for cloud properties)

Summary

Introduction

Strategy

Ishida, H., and T. Y. Nakajima, 2009: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. Journal of Geophysical Research-Atmospheres, 114, doi:10.1029/2008JD010710.

Nakajima, T. Y., T. Tsuchiya, H. Ishida, and H. Shimoda, 2011: Cloud detection performance of spaceborne visible-to-infrared multispectral imagers. Applied Optics, 50, 2601-2616

Nakajima, T. Y., and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. Journal of the Atmospheric Sciences, 52, 4043-4059.

Kawamoto, K., T. Nakajima, and T. Y. Nakajima, 2001: A global determination of cloud microphysics with AVHRR remote sensing. Journal of Climate, 14, 2054-2068.

Validation of the satellite-derived cloud flag, using

Whole Sky Camera system in Tokai University

Tokai University Automatic Cloud Photograph Acquisition System Tokai University Meteorological Observation System

Validation: Whole Sky Camera Analysis

- Sky index, **SI**=(Blue-Red)/(Blue+Red)
- Brightness Index, **BI**=(Red+Green+Blue)/(255*3)

Validation of cloud flag by using Sky camera systems

Accuracies *1	Ny- Alesund	Sapporo	Tsukuba TKSC	Tsukuba MRI	Kumamoto	Miyako- jima	Syowa Station	All
Ν	53	25	58	25	53	47	33	294
Accuracy (%)	94.3	88.0	94.8	100.0	88.7	83.0	84.8	90.5

*1 In the case of cloud height at 6 km

=> Meet the release criterion

Nakajima, T. Y., and Coauthors, 2019: Theoretical basis of the algorithms and early phase results of the GCOM-C (Shikisai) SGLI cloud products. Prog Earth Planet Sci 6:52.

Comparison between SGLI and MODIS (Water Cloud Properties)

Nakajima, T. Y., and Coauthors, 2019: Theoretical basis of the algorithms and early phase results of the GCOM-C (Shikisai) SGLI cloud products. Prog Earth Planet Sci 6:52.

a) Cloud Optical Thickness b) C) Cloud Top Temperature (Ice, Ocean) **Cloud Effective Radius** (Ice, Ocean) (Ice, Ocean) 60 60 270 E1.0 1.0 E1.0 Ocean Ocean Ocean 260 50 50 Rel. Freq. (max=1.) Rel. Freq. (max=1.) Rel. Freq. (max=1.) 250 40 40 SGLI 240 SGLI 19 240 230 30 30 20 220 20 R = 0.86R = 0.47R = 0.7510 210 Bias = 7.0 [K] RMSE = 11.1 [K] Bias = 2.0 [um] RMSE = 9.1 [um] Bias = 2.2RMSE = 4.210 + 10 0.0 0.0 0.0 0 200 210 220 230 240 250 260 270 30 50 10 20 40 60 20 30 40 50 60 0 MODIS MODIS MODIS d) e) **Cloud Optical Thickness** Cloud Top Temperature **Cloud Effective Radius** (Ice, Land) (Ice, Land) (Ice, Land) 60 60 270 E1.0 E1.0 E1.0 Land Land Land 260 50 50 Rel. Freq. (max=1.) Rel. Freq. (max=1.) Rel. Freq. (max=1.) 250 40 NGLI 30 40 240 SGLI SGLI 230 30 20 220 20 R = 0.82Bias = 2.4 RMSE = 4.6 R = 0.66R = 0.6510 Bias = 2.5 [um] RMSE = 7.7 [um] 210 Bias = 10.2 [K] RMSE = 14.0 [K] 10⊬ 10 0.0 0.0 200 210 220 230 240 250 260 270 0.0 0 50 20 10 ว่า 0 10 60 20 30 40 50 60 MODIS MODIS MODIS

Comparison between SGLI and MODIS (Ice Cloud Properties)

Nakajima, T. Y., and Coauthors, 2019: Theoretical basis of the algorithms and early phase results of the GCOM-C (Shikisai) SGLI cloud products. Prog Earth Planet Sci 6:52.

Introduction

Strategy

CFODD

Validation

Summary

Summary

Clouds exert an important influence on the *water* and *energy* balances and processes, thus, more observations are required for understanding of *cloud lifecycle*.

e.g. Randall et al. (1984) pointed out that a mere 4% increase of the Earth's area covered by lowlevel clouds, compensates for a projected 2–3 K rise in global temperature due to a doubling of CO_2 .

- Need more observations of clouds from satellites for
 - generating cloud climatology database
 - investigating cloud evolution process
- □ The CFODD presents
 - cloud evolution process, clearly.
 - results are consistent with past studies by TRMM, ADEOS2, MODIS.
 - useful for model evaluations.
- A Doppler capability of the EarthCARE/CPR improves our understanding of cloud evolution process (2024-).
- 3rd generation geostationary satellites will observe time-series of cloud evolution, every 2.5 min to 10 min.

References

- Randall, D. A., J. A. Coakley, Jr., C. W. Fairall, R. A. Kropfli, and D. H. Lenschow, 1984: Outlook for research on subtropical marine stratiform clouds. Bull. Amer. Meteor. Soc., 65, 1290–1301.
- Nakajima, T. Y., and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. Journal of the Atmospheric Sciences, 52, 4043-4059.
- Kawamoto, K., T. Nakajima, and T. Y. Nakajima, 2001: A global determination of cloud microphysics with AVHRR remote sensing. Journal of Climate, 14, 2054-2068.
- □ Ishida, H., and T. Y. Nakajima, 2009: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. Journal of Geophysical Research-Atmospheres, 114, doi:10.1029/2008JD010710.
- Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010: Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet size. J. Atmos. Sci., 67, 1884-1896.
- Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010: Droplet growth in warm water clouds observed by the A-Train. Part II: A Multi-sensor view. J. Atmos. Sci., 67, 1897-1907.
- Nakajima, T. Y., T. Tsuchiya, H. Ishida, and H. Shimoda, 2011: Cloud detection performance of spaceborne visible-to-infrared multispectral imagers. Applied Optics, 50, 2601-2616
- Eguchi, K., I. Uno, K. Yumimoto, T. Takemura, T. Y. Nakajima, M. Uematsu, and Z. Liu, 2011: Modulation of cloud droplets and radiation over the North Pacific by sulfate aerosol erupted from Mount Kilauea. SOLA, 7, 77-80
- Suzuki, K. J-C. Golaz, G. L. Stephens, 2013: Evaluating cloud tuning in a climate model with satellite observations, Geo. Res. Lett., 40, 4464-4468.
- Illingworth, A., and Coauthors, 2015: THE EARTHCARE SATELLITE: THE NEXT STEP FORWARD IN GLOBAL MEASUREMENTS OF CLOUDS, AEROSOLS, PRECIPITATION AND RADIATION. Bulletin of the American Meteorological Society, 96, 1311-1332.
- Nakajima, T. Y., and Coauthors, 2019: Theoretical basis of the algorithms and early phase results of the GCOM-C (Shikisai) SGLI cloud products. Prog Earth Planet Sci 6:52.
- Matsumoto, Y., M. Wang, Y. Sato, and T. Y. Nakajima, 2023: Regional dependency of the cloud droplet growth process in combined analysis of Aqua MODIS and CloudSat CPR. SOLA, 19, 63-69.

backup

Figure : Various size and habit of Voronoi models (Ishimoto et al., 2012) (shape (a): size parameter (SZP) < 660; shape (b) – (g): 660 < SZP < 2250)

↑ Matsui et al. (GRL 2004) by TRMM

↑ Masunaga et al. (JGR 2002) by TRMM RET/REV SMRATIO. 2003.04.01-03.04.30

120W

6ÓW

COD (Cloud Optical Depth) slicing?

- Nakajima, Suzuki, Stephens (JAS, 2010b)
 - Use the 2B-TAU products from the CloudSat mission
 - Were not independent from CPR signals
- Suzuki, Nakajima, Stephens (JAS, 2010)
 - Adiabatic condensation growth assumption.

$$\tau_d(h) = \tau_c \left[1 - \left(h / H \right)^{5 / 3} \right]$$

h : height from the cloud bottom, H : geometrical thickness of cloud