

3 - 10 November 2023 Busan, Korea

Hosted by Korea Meteorological Administration

13th Asia-Oceania Meteorological Satellite Users' Conference

Session 5: Application for Land Surface and Sea Surface Derived from Satellite Observations (I)

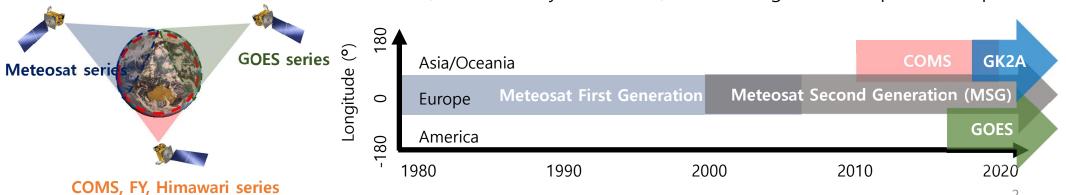
Enhancing Consistency and Long-Term Reliability of Surface Albedo from COMS/MI and GK2A/AMI

Jongho Woo¹, Kyung-soo Han^{1*}, Daeseong Jung¹, Suyoung Sim¹, Nayeon Kim¹, and Eunha Sohn²

1.Division of Earth Environmental System Science (Major of Spatial Information System Engineering), Republic of Korea 2.Senior Researcher, Satellite Planning Division, National Meteorological Satellite Center/KMA, Republic of Korea

Introduction Geostationary Satellite Surface albedo

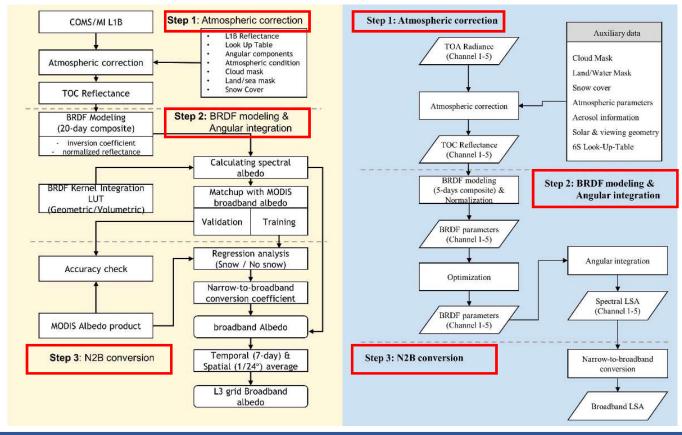
Surface Albedo


- The ratio of solar energy incident on the surface to the solar energy reflected from the surface
- An important variable to characterize the energy balance in the soil-vegetation-atmosphere system
- Surface albedo, an Essential Climate Variable (ECV) selected by GCOS, is utilized for climate change monitoring and research

$$Surface \ Albedo = \frac{Solar \ radiation \ reflected}{Solar \ Radiant \ Incident} \ to \ the \ surface$$

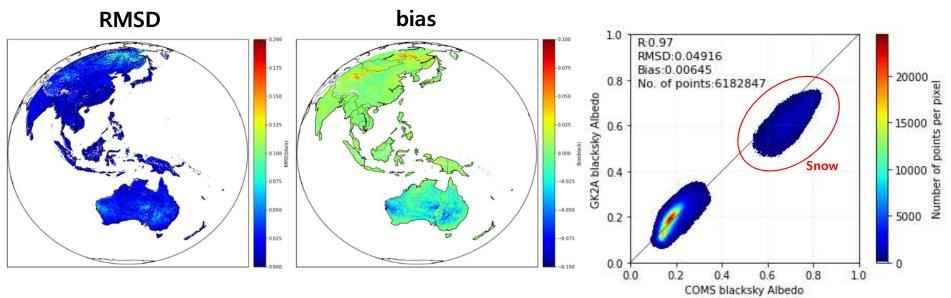
❖ Geostationary Satellite Surface Albedo Retrieval Status

COMS/MI ~ GK-2A/AMI provide surface albedo products for Asia/Oceania regions


→ COMS/MI ended its mission in March 2020, succeeded by GK-2A/AMI, necessitating consistent product outputs

Introduction Surface Albedo Algorithms

❖ Comparison of retrieval algorithms between COMS/MI and GK-2A/AMI

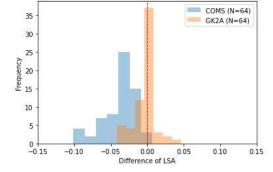

→ The steps of the COMS/MI and GK-2A/AMI surface albedo retrieval algorithms are the same, but errors occur between outputs due to differences in input data and auxiliary data.

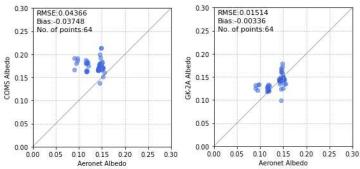
Introduction Error comparison

❖ Error comparison of surface albedo between COMS/MI and GK-2A/AMI

- The RMSD appears relatively high in Manchuria, the Tibetan Plateau, and the Australian continent compared to other areas.
- A negative Bias is observed in the Australian continent, while a positive Bias is seen in the northern latitudes.
- In general land type, the values between the two outputs are generally similar..
 In snowy regions, the COMS/MI Albedo tends to be greater than the GK-2A/AMI Albedo.
 This is likely due to errors in the COMS/MI's snow and cloud detection data

Introduction Error comparison

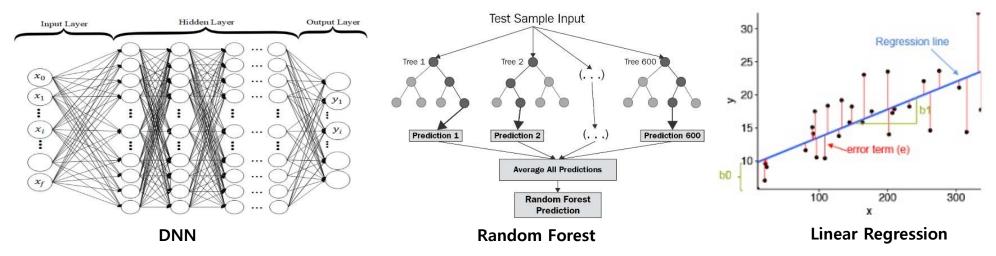

Error comparison of surface albedo between COMS/MI and GK-2A/AMI


- Measurement method : AERONET Version 3 inversion algorithm (2019.07.01 ~ 2020.03.31)
- Temporal and spatial resolution matching: Observation data is used when it is within half a pixel (1 km) based on GK-2A/AMI standards and within one hour of local noon
- The error and values between COMS/MI and the in-situ data appear significantly larger than those of GK-2A/AMI.

 This is suspected to be due to the difference in reference angles (COMS/MI: Mean SZA, GK-2A/AMI: local noon SZA)

сомѕ			GK2A			
RMSE	Bias	N	RMSE	Bias	N	
0.0436	-0.0374	64	0.0151	-0.0033	64	

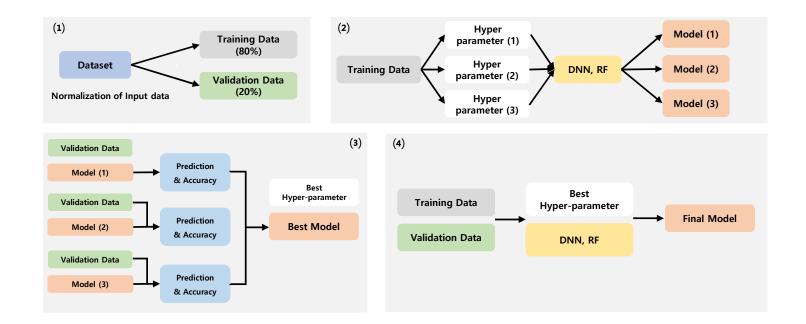
	COMS			GK2A		
Sites	RMSE	Bias	N	RMSE	Bias	N
Bukit_Kototabang	0.0070	0.0070	1	0.0462	0.0462	1
EPA-NCU	0.0177	-0.0177	1	0.0232	0.0232	1
Gangneung_WNU	0.0655	-0.0654	6	0.0064	-0.0053	6
Kuching	0.0038	-0.0023	2	0.0194	0.0193	2
Osaka	0.0479	-0.0476	6	0.0115	-0.0109	6
Pokhara	0.0359	-0.0359	1	0.0215	0.0215	1
Silpakorn_Univ	0.0260	-0.0256	35	0.0039	0.0017	35
Yonsei_University	0.0902	-0.0898	5	0.0357	-0.0353	5


Method

Error Correction Model

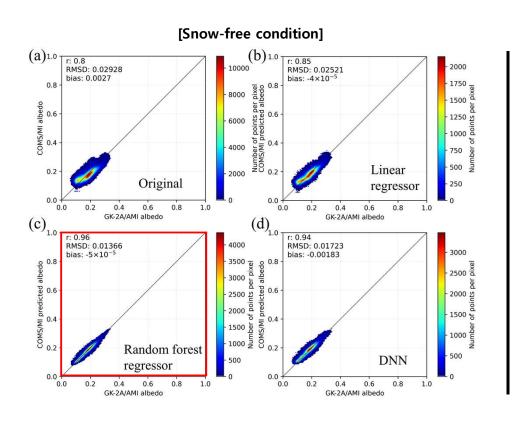
Error Correction approach using machine learning techniques

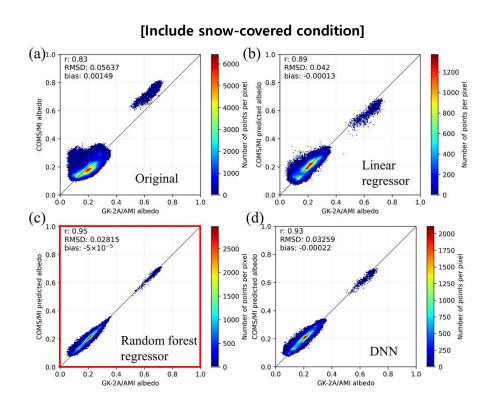
- **DNN:** A Deep Neural Network (DNN) is an artificial neural network composed of an input layer and an output layer with multiple hidden layers in between.
- Random Forest: An ensemble model that trains multiple decision tree models and aggregates their results for the final prediction
- **Linear Regression:** A regression analysis technique that models the linear correlation between the dependent variable Y and one or more independent variables X. When based on a single explanatory variable, it's referred to as simple linear regression, and when based on more than one, it's called multiple linear regression.


Method

Error Correction Model

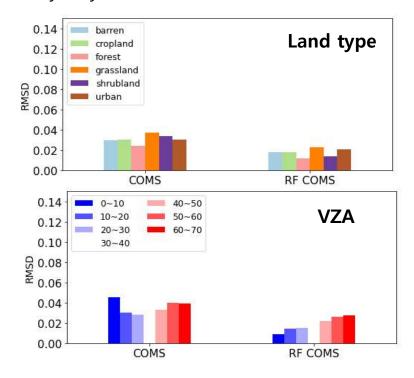
Hyper-parameter Tuning for machine learning-based optimal model generation

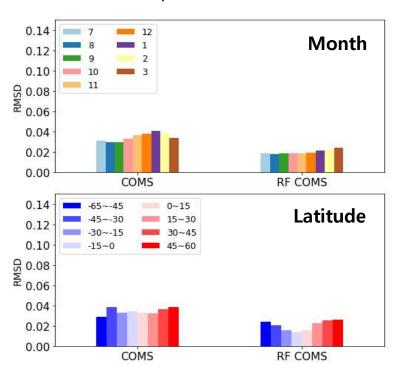

- Input data : COMS/MI surface albedo, SZA, VZA, Latitude, Longitude
- Output data : Corrected COMS/MI surface albedo
- Setting the optimum parameters with Python library GridSearchCV
- RF regressor : N_estimators=10, Max_depth=20, min_samples_leaf=8, min_samples_split=8
- DNN: Hidden layer=5, Hidden node=200, Batch size=256, Activation=Relu



Model performance results and comparisons

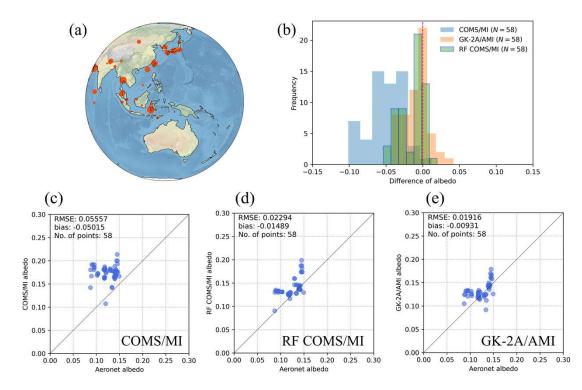
- MLR, DNN, and RF regressor models were compared to correct the COMS/MI surface albedo
- The RF regressor model showed the best prediction with RMSD = 0.014 and r = 0.96 for snow-free conditions
- For include snow-covered conditions, RF model had the smallest error with RMSD = 0.028 and the highest correlation coefficient at r = 0.95





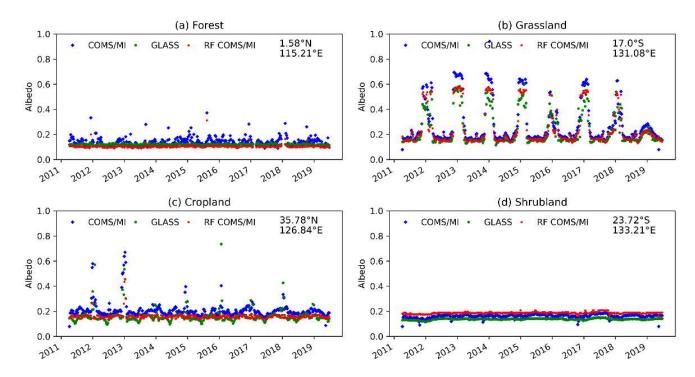
Uncertainty analysis for various conditions over overlapping periods

- RMSD analysis by Landtype: Decreased error observed in all land types.
- Monthly RMSD analysis: Overall decrease in RMSD observed in every month.
- RMSD analysis by VZA (View Zenith Angle): Overall decrease in RMSD, but as VZA increases, a trend of increasing error remains.
- RMSD analysis by Latitude: Overall error decrease and reduction in error near the equator.



Evaluation of the accuracy and stability of the corrected surface albedo

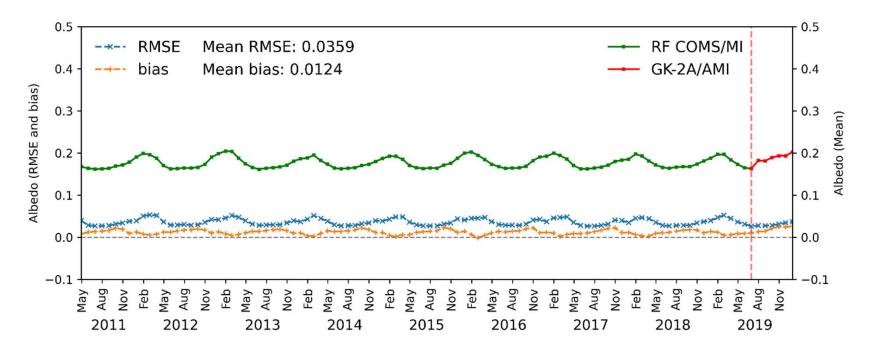
- Validation with ground observation data (AERONET): The error of RF COMS is lower than that of COMS
- GK-2A exhibits a normal distribution pattern, while RF COMS shows a weak negative distribution pattern.
 RF COMS improves the negative distribution pattern of COMS
- Compared to COMS, RF COMS has a lower RMSE of 0.0327.



Results

Evaluation

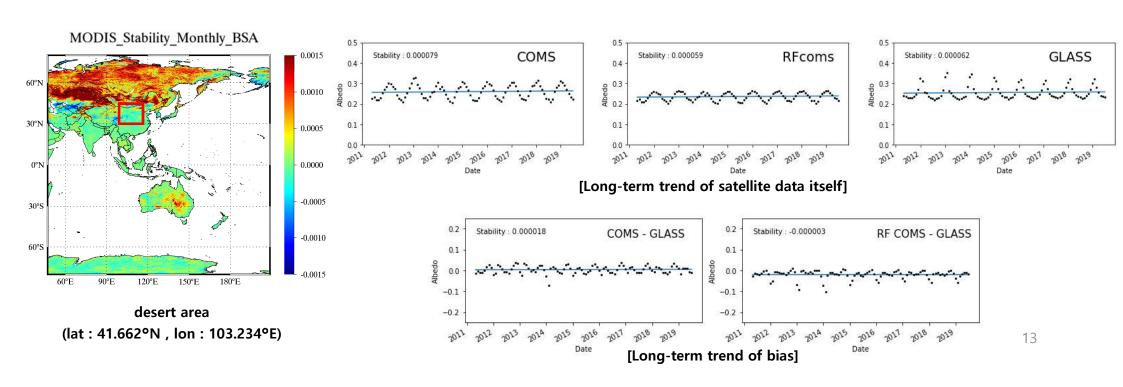
- Evaluation of the accuracy and stability of the corrected surface albedo
- > Temporary Consistency Analysis: Time series of surface albedo by land type (2011.4 ~2019.6)
 - Forest, cropland: Forest, cropland: The albedo of COMS has significant errors compared to GLASS and RF COMS
 - Grassland: Overall higher values in snow-covered areas during winter, RF albedo tends to have less error than COMS albedo
 - Shrubland: In the southern hemisphere, the values of RF COMS are relatively high



Results

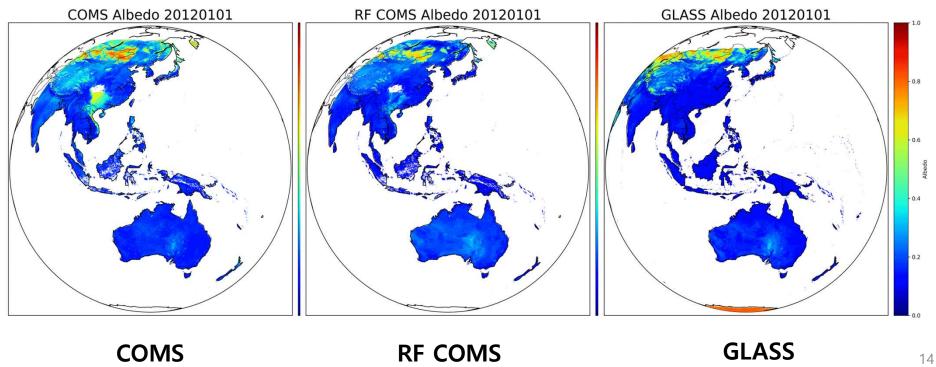
Evaluation

- **❖** Evaluation of the accuracy and stability of the corrected surface albedo
- Comparison of accuracy with GLASS data and Temporary Consistency (2011.4 ~2019.12)
 - Comparison of RMSE with the GLASS data and Temporal Consistency: 2011.4 ~ 2019.12
 - Accuracy validation for the against GLASS data: Mean RMSE: 0.0359 / Mean Bias: 0.0124
 - Maintaining the trend of error in RF COMS versus GLASS with GK-2A


Results

Evaluation

❖ Evaluation of the accuracy and stability of the corrected surface albedo


- > Temporal Stability analysis over the entire period (2011~2019)
 - For stability analysis, the target is a temporally homogeneous surface (desert) for evaluation based on MODIS data
 - 1. Long-term trend of satellite data itself
 - 2. Long-term trend of Bias (reflecting temporal changes in the reference data)

Evaluation

- **❖** Evaluation of the accuracy and stability of the corrected surface albedo
 - > Temporal & Spatial changes over the entire period (2012~2019)
 - The spatial distribution and changes of the corrected COMS/MI albedo appear more similar and stable compared to GLASS

Thank you