

MODIS LST: A tool to generate high resolution temperature dataset in Iran

YASHAR FALAMARZI

ACADEMIC MEMBER OF

CLIMATOLOGY RESEARCH INSTITUTE (CRI)

RESEARCH INSTITUTE OF METEOROLOGICAL AND ATMOSPHERIC SCIENCE (RIMAS)

IRAN

Outlines

Introduction

- Climate of Iran
- Importance of grided temperature database
- Temperature Laps Rate (TLR)
- MODIS

Material and methods

- Study area
- Data
- Methodology

Results

Main Findings

Climate of Iran

Precipitation: 15mm to 2113 mm/year with most of the area with 200mm/year

Temperature: 17 -18 degree centigrade

Evaporation: ~2100 mm/year

Importance of grided temperature database

It is an important climate factor in several sectors:

- Agriculture
- Water resources
- Environmental resources
- Climate ...

Stational data

- Spatial and temporal discontinuity of data
- Usability in for example hydrological and climatological modeling contains limitations
- Grided data
- Spatially continues
- Suited for modeling purposes

Temperature Laps Rate (TLR)

Higher elevation: lower temperature

TLR is a good tool for spatial interpolation of temperature

Low number of stations and unsuitable distribution of them: bi uncertainty in calculated TLR

Satellite data is a good approach to estimate spatially continue TLRs

3 - 10 November 2023 Busan, Korea

13th Asia-Oceania Meteorological Satellite Users' Conference

Moderate-resolution Imagi Spectroradiometer (MODIS)

Satellite-based sensor used for earth and climate measurements

Terra (EOS AM) satellite, launched by NASA in 1999

Aqua (EOS PM) satellite, launched in 2002

Obtaining data in 36 spectral bands with wavelengths ranging from 0.4 to 14.385 μm

spatial resolution of 250 m, 500 m, and 1 km

Study area

- South West of Asia
- Area: 1648195 Km2
- 25N to 45N and 44E to 63E
- Almost 24 different climatic regions
- Mostly arid and semi-arid
- East and center: Uncomplicated, low height and relatively uniform views
- West: Elevated and with various views

Data

Observations:

• QC temperature data of 317 stations (1980-2021)

Satellite data:

• Averages daily Terra and Aqua Land Surface Temperature (LST) with 1km spatial resolution

Reanalysis temperature data from 3 database: ERA5, CFS and MERRA2

Data

Reanalysis Database	Source	Spatial resolution		
ERA5	Herbach et.al. (2021)	0.25 by 0.25 degree		
CFSR/CFS.v2	Saha et.al. (2010) Saha et.al. (2014)	0.3125 by 0.3125 degree for CFSR/ 0.25 by 0.25 for CFS.v2		
MERRA2	Gelaro et.al. (2017)	0.625 by 0.5 degree		

Data

Method

Obtain monthly TLR maps using MODIS LST and DEM data

- TLR should not be more than 0.015 degree centigrade in meter
- Relationship between elevation and temperature should be significant
 - A threshold for Standard division of elevation (SDE) by trial and error
 - Correlation coefficient (R) should be significant

Downscale reanalysis data from their original spatial resolutions to 0.0083 KM

$$T_{DS} = T_{org} - [Z_{DS} - Z_{org}]TLR$$

Compare downscaled data with observed data using RMSE, MAE and NS

Method-TLR computation

Results

Standard division of elevation (SDE) threshold: 66m

Correlation coefficient (R) should be significant

Blue: Alpha

Red: Remained grids (%)

Elevation zoning

K-means and silhouette coefficient: 5 elevation clusters

Model Summary

Algorithm	TwoStep			
Inputs	1			
Clusters	5			

Cluster Quality

Elevation zoning

Elevation Class	AMSL	Number of Stations		
Flat lands	103.95	59		
Low lands	830.92	62		
Moderately elevated	1349.85	101		
Almost elevated	1748.48	70		
Elevated lands	2268.26	25		

TLR

13th Asia-Oceania Meteorological Satellite Users' Conference

Sample Downscaled data

TLR

Climate Region	Min	Max	Range	Mean	Stdv	
Cold and mountainites	-0.0145	0.0127	0.0271	-0.0042	0.0033	
Moderate and dry	-0.015	0.0109	0.0259	-0.0034	0.0027	
semi dry hot	-0.0083	0.0009	0.0092	-0.0032	0.0019	
Semi-humid warm	-0.012	-0.0022	0.0098	-0.0066	0.0012	
Caspian humid	-0.0113	0.0018	0.0131	-0.0024	0.0028	
Very hot and dry	-0.0127	0.0140	0.0267	-0.0018	0.0026	

Downscaled grided data

		Index								
		RMSE		R		AE	М	SE	N	
Elevation Class	RA Model	Original data	DS data							
	ERA	2.70	2.27	0.99	0.99	2.43	1.98	0.84	0.88	
Flat lands	CFS	3.02	2.74	0.98	0.98	2.64	2.35	0.83	0.86	
	MERRA2	3.00	2.61	0.98	0.98	2.65	2.23	0.82	0.86	
	ERA	3.51	2.88	0.99	0.99	3.25	2.59	0.82	0.87	
Low lands	CFS	4.55	3.87	0.98	0.98	4.17	3.45	0.72	0.78	
	MERRA2	4.19	3.37	0.98	0.98	3.87	3.01	0.76	0.83	
Moderately	ERA	3.13	2.49	0.99	0.99	2.83	2.17	0.87	0.90	
elevated	CFS	4.13	3.44	0.98	0.98	3.68	2.97	0.80	0.85	
	MERRA2	3.49	2.88	0.98	0.98	3.10	2.45	0.85	0.89	
	ERA	2.99	2.38	0.99	0.99	2.69	2.06	0.88	0.92	
Almost	CFS	3.82	3.25	0.98	0.98	3.36	2.77	0.84	0.88	
cicvateu	MERRA2	3.17	2.69	0.98	0.98	2.75	2.23	0.89	0.91	
Floveted lands	ERA	3.42	2.92	0.99	0.99	3.06	2.54	0.84	0.87	
	CFS	3.60	3.30	0.98	0.98	3.10	2.80	0.84	0.85	
	MERRA2	2.93	2.70	0.98	0.98	2.52	2.26	0.89	0.89	

Downscaled grided data

Index										
N	SE	Μ	IAE	R		RMSE				
DS data	Original data	DS data	Original data	DS data	Original data	DS data	Original data	RA Model	No. stations	Climate Region
0.94	0.91	1.82	2.41	0.99	0.99	2.09	2.67	ERA		Madamata
0.87	0.81	2.86	3.54	0.98	0.98	3.28	3.95	CFS	71	Moderate
0.92	0.85	2.28	3.17	0.99	0.99	2.63	3.49	MERRA2		and dry
0.91	0.86	2.19	3.05	0.99	0.99	2.49	3.29	ERA		0
0.89	0.84	2.41	3.19	0.99	0.99	2.78	3.53	CFS	22	Semi-numia
0.90	0.85	2.26	2.79	0.99	0.99	2.58	3.09	MERRA2		wariii
0.91	0.89	1.65	1.93	0.99	0.99	1.89	2.18	ERA		
0.86	0.80	2.04	2.35	0.98	0.98	2.39	2.68	CFS	24	semi dry hot
0.91	0.87	1.75	2.05	0.99	0.98	2.06	2.37	MERRA2		
0.87	0.83	2.09	2.54	0.98	0.98	2.46	2.88	ERA		
0.87	0.83	2.56	2.82	0.98	0.98	3.10	3.32	CFS	25	Caspian
0.86	0.80	2.32	2.74	0.97	0.97	2.83	3.21	MERRA2		nunna
0.86	0.82	2.57	3.28	0.99	0.99	2.92	3.60	ERA		
0.83	0.79	3.12	3.71	0.98	0.98	3.60	4.18	CFS	152	Cold and
0.86	0.84	2.66	3.19	0.98	0.98	3.13	3.60	MERRA2		mountainites
0.92	0.92	1.94	2.13	0.99	0.99	2.22	2.40	ERA		N7
0.84	0.78	3.16	3.75	0.98	0.98	3.57	4.13	CFS	23	very not and
0.87	0.81	2.71	3.31	0.99	0.99	3.06	3.65	MERRA2		ury

Key Findings

Downscaling procedure applied in this study improved the spatial resolution of RA data to 1km

The produced 1km data set showed better performance in comparison with original data sets at all climate regions and elevation classes

ERA5 (both original and downscaled data) showed better performances

The highest improvement in precision was seen for MERRA2 and in low lands with 17% improvement and in moderate and dry climate region the improvement is 20%.